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A reliable large-scale design space was constructed by integrating the reliability of a scale-up rule into 
the Bayesian estimation without enforcing a large-scale design of experiments (DoE). A small-scale DoE was 
conducted using various Froude numbers (X1) and blending times (X2) in the lubricant blending process for 
theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the 
powder mixture (Y1), tablet hardness (Y2), and dissolution rate (Y3) on a small scale were calculated using 
multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. A 
constant Froude number was applied as a scale-up rule. Experiments were conducted at four different small 
scales with the same Froude number and blending time in order to determine the discrepancies in the re-
sponse variables between the scales so as to indicate the reliability of the scale-up rule. Three experiments 
under an optimal condition and two experiments under other conditions were performed on a large scale. 
The response surfaces on the small scale were corrected to those on the large scale by Bayesian estimation 
using the large-scale results and the reliability of the scale-up rule. Large-scale experiments performed 
under three additional sets of conditions showed that the corrected design space was more reliable than the 
small-scale design space even when there was some discrepancy in the pharmaceutical quality between the 
manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development 
when a DoE cannot be performed at a commercial large manufacturing scale.

Key words quality by design; design of experiments; multivariate regression; modeling

The international conference on harmonization (ICH)1) 
outlined quality by design (QbD) as a systematic approach 
to development that begins with predefined objectives and 
emphasizes product and process understanding and process 
control, based on sound science and quality risk management. 
The QbD principle implies that pharmaceutical quality should 
not be tested using day-to-day release testing but should be 
elaborated by design in advance. One of the most significant 
approaches in the QbD concept is the establishment of a de-
sign space based on a multidimensional combination of input 
formulation parameters, process parameters, or material at-
tributes that provide assurance of quality attributes.2)

Design of experiments (DoE) studies3,4) have been used 
effectively to construct design spaces. DoE is a useful method 
for systematic understanding of the relationship between 
input parameters and output quality attributes. A typical de-
sign space is established as a superposition of the response 
surfaces for each quality attribute generated by the response 
surface method (RSM) using the DoE results.5–11) The RSM 
includes statistical analyses such as multiple linear regression 
analysis12) and artificial neural networks.13) Takayama et al. 
developed a novel RSM that incorporates multivariate spline 
interpolation, known as RSM-S.14,15) RSM-S is an effective 
tool for obtaining reliable response surfaces of nonlinear 
phenomena and calculating optimal solutions. A bootstrap 
resampling technique and self-organizing map (SOM) cluster-
ing have been reported to qualify the reliabilities of optimal 
solutions16–18) and response surfaces.19)

In order to construct a reliable design space for com-
mercial-scale manufacturing of a drug product, a number of 

experiments based on the DoE principles should be conducted 
on a commercial scale. However, it is practically difficult 
to perform these experiments because of the high costs in-
volved. Therefore, DoE studies on establishing a design space 
have often been conducted on a manufacturing scale smaller 
than the commercial scale based on scale-up rules. Scale-up 
rules that are often widely used include a constant Froude 
number20) for blending and a constant Froude number21) or 
power consumption of the impeller motor22) for wet high-shear 
granulation. However, the scale-up of high-shear granulation 
conducted by Ogawa et al. indicated that a constant periph-
eral velocity resulted in a discrepancy in the design spaces 
between manufacturing scales.12) This finding indicated that, 
at present, there is no universal and absolute scale-up rule 
that can be applied to all pharmaceuticals. Meanwhile, the 
ICH Quality Implementation Working Group has suggested 
that the impact of the manufacturing scale on the DoE results 
should be clarified and reduced.23) Therefore, if the scale-up 
rule used is found to contain errors after a further scale-up, 
the design space constructed on a pilot scale cannot be applied 
to commercial manufacturing.

Bayesian estimation based on posterior probability distri-
bution can be used to estimate the probability of uncertain 
phenomena. The posterior probability distribution can be 
calculated from the prior probability distribution and a few 
additional data using the Bayes theorem. Bayesian estimation 
has been applied to the information technology industry, and 
to economics and population pharmacokinetics in the phar-
maceutical sciences. Peterson reported the usability of Baye-
sian estimation by calculating the probability that the quality 
attributes would meet specifications and by constructing a 
credible design space.24)

Regular Article

* To whom correspondence should be addressed. e-mail: maeda.jin.d2@daiichisankyo.co.jp

The authors declare no conflict of interest.



1156 Vol. 60, No. 9

We previously reported that a reliable large-scale design 
space was constructed using a Bayesian estimation method 
with a small-scale DoE and five batches of large-scale man-
ufacturing data without enforcing a large-scale DoE.25) 
The large-scale design space was more reliable than the 
small-scale one, despite the small discrepancy in the phar-
maceutical quality between the two manufacturing scales. 
However, we believed that a more reliable design space could 
be constructed if a precision of the scale-up rule was predicted 
in advance and the large-scale data was emphasized more than 
the small-scale design space in Bayesian estimation, when the 
scale-up rule was less reliable.

In this study, we developed a more useful method for 
constructing a more reliable large-scale design space by in-
tegrating the reliability of the scale-up rule into the Bayesian 
estimation method. The reliability of the scale-up rule was 
estimated as the deviation of the quality attributes when the 
product was manufactured on various small scales. The lu-
brication process used for theophylline tablet manufacturing 
was chosen as a model experimental system for the design 
space construction. We also validated the large-scale design 
space estimated by the improved method and compared it 
with the small-scale design space and the previously-reported 
large-scale design space.25)

Experimental
The setup process for the plant-scale response surfaces 

utilizing Bayesian estimation is summarized in Fig. 1. 
We attempted to construct a Bayesian design space for 

the lubrication process of theophylline tablets applied to a 
large scale (3 kg) using the design space constructed from a 
small-scale (0.3 kg) DoE study, three-batch experiments at 
various small scales, and five-batch experiments on the large 
scale.

Materials  Theophylline (Hachidai Pharmaceutical Co., 
Japan), lactose monohydrate (Dilactose S®, Freund Corpora-
tion, Japan), cornstarch (Nihon Shokuhin Kako Co., Japan), 
microcrystalline cellulose (Ceolus® PH-101, Asahi Kasei 
Chemicals Co., Japan), and magnesium stearate (Mallinckrodt, 
Inc., Doral, Florida, U.S.A.) were used in all the experiments.

Scale-Up Rule  A constant Froude number was applied as 
the scale-up rule. A Froude number20) is a scale-independent 
variable defined as:

 2( ) / 900Fr r πn g=   (1)

where r (m) is the rotating radius of a blender, n (rpm) is the 
rotating speed, and g (m/s2) is the acceleration of gravity.

Preparation of the Theophylline Tablets  The theophyl-
line tablets used in this study were produced using the direct 
compression method with the formulation shown in Table 1. 
V-shaped blenders with volumes of 150 mL, 500 mL, 1 L, 2 L 
(Type S-5, Tsutsui Scientific Instruments Co., Japan), and 10 L 
(TCV-30, Tokuju Co., Japan) were used to prepare mixtures 
for tableting. The 10-L scale was regarded as the large scale, 
whereas the other volumes were regarded as small scales. The 
specifications and operational conditions used for the blenders 
are summarized in Table 2.

All ingredients, except magnesium stearate, were blended 
in the V-shaped blenders at a Froude number of 0.25 (45 rpm 
in the 1-L blender and 32 rpm in the 10-L blender) for 15 min. 
The blended mixture was sieved in a screening mill (Quadro 
Comil, Powrex Corporation, Japan) with a screen size of 
0.991 mm and an impeller rotating speed of 300 rpm. After 
adding the magnesium stearate, the mixture was further 
blended to obtain the final blend in the V-shaped blenders at 
different predetermined rotation speeds and blending times. 
The final blend was compressed with 8.5-mm round punches 
and biconvex faces at 250-mg weight and 7-kN compression 

Fig. 1. Construction Process for Commercial-Scale Response Surfaces 
Using Bayesian Estimation

a Calculated by using Eqs. 7 and 8 described later. b Calculated by using Eqs. 5 
and 6 described later.

Table 1. Components and Composition of Theophylline Tablets

Components Quantity (mg/tablet)

Theophylline 100
Lactose monohydrate 66.5
Cornstarch 28.5
Microcrystalline cellulose 50
Magnesium stearate 5
Total 250

Table 2. Specifications and Operational Conditions of the V-Shaped Blenders

Blender type V-150 mL V-500 mL V-1 L V-2 L V-10 L

Blender volume (L) 0.15 0.5 1 2 10
Total charge of mass (kg) 0.045 0.15 0.3 0.6 3
X1: Froude number 0.25 0.25 0.10–0.40 0.25 0.10–0.40
Rotating radius (m) 0.065 0.09 0.11 0.155 0.22
Rotating speed (rpm) 59 50 29–57 38 20–40
X2: Blending time (min) 30 30 2–58 30 2–58
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force per tablet using a 24-station rotating tableting machine 
(Correct 24, Kikusui Co., Japan).

Small-Scale DoE  The Froude number (X1) and blending 
time (X2) were selected as the input variables. A total of nine 
experiments were performed using the V-1 L blender to obtain 
the response surfaces of each response variable according to 
the two-factor three-level (32) experimental design (Table 3).

Evaluation of Powder and Tablets Properties  The 
compression rate of the powder mixture (Y1), tablet hardness 
(Y2), and dissolution rate at 30 min (Y3) were selected as the 
response variables.

The compression rate (CR)26) is an indicator of powder flow-
ability, which is defined as follows:

 T L T(%) ( ) / 100CR ρ ρ ρ= ×   (2)

where ρT and ρL indicate the tapped and loose densities of the 
powder (kg/m3), respectively. The tapped and loose densities 
of the mixture for tableting were measured using tap density 
equipment (SZ-02, Rinkan Co., Japan).

The tablet hardness was measured using a tablet hardness 
tester (Tablet tester Pharmatest WHT, Pharma Test Appa-
ratebau, Germany). Dissolution testing was performed using 
a 50-rpm paddle and 900 mL of water at 37°C. The sample 
solution was assayed using an automated flow-through UV 
spectrophotometric method at 253 nm with a 10-mm-long cell 
(Automated dissolution apparatus, Toyama Sangyo Co. and 
Shimadzu Co., Japan).

Construction of the Response Surfaces and Design Space 
on the Small Scale and Calculation of the Simultaneously 
Optimal Condition  RSM-S was carried out to calculate 
the response surfaces and the simultaneously optimal solution 

on a small scale using dataNESIA™ version 3.0 (Yamatake 
Corp., Tokyo, Japan). The criteria for the quality attributes in 
this case study were set as follows: Y1=0.320 (upper limit), 
Y2=30 N (lower limit), and Y3=75% (lower limit). The ac-
ceptance areas for each quality attribute were superposed to 
determine a design space. The standard deviation of the re-
sponse surfaces, which represented the reliability of the mod-
els, was evaluated with the bootstrap resampling technique 
and SOM clustering using dataNESIA™ and Viscovery® 
(Eudaptics Software Gmbh, Austria), respectively, according 
to the previously reported methods.17,18) Bootstrap resampling 
was performed 200 times.

Experimental Design for Estimating the Reliability of 
the Scale-Up Rule  Experiments were conducted at three 
different small scales, with the same Froude number and 
blending time as used for the central condition of the DoE, 
in order to determine the discrepancies in the response vari-
ables between the scales and to estimate the reliability of the 
scale-up rule (Table 4).

Theory of Bayesian Estimation  Bayesian estimation is a 
methodology used to construct a posterior probability distri-
bution for an uncertain phenomenon. The posterior probability 
distribution is computed with the Bayes theorem considering 
an assumed prior probability and likelihood estimated from 
newly observed data.

When the prior probability and likelihood are expressed as 
normal distributions, the posterior probability is also distrib-
uted normally.27) The average and standard deviation of the 
posterior probability distribution are expressed as follows:

Table 4. Results of Experiments Conducted on Various Small-Scales

Input process parameter Output quality attribute

X1 X2 Y1 Y2 Y3

Blender type Froude number Rotation speed  
(rpm)

Blending time  
(min) Compression rate Hardness  

(N)
Dissolution rate at 

30 min (%)

V-150 mL 0.25 60 30 0.277 37.5 80.4
V-500 mL 0.25 51 30 0.297 41.6 82.0
V-1 L 0.25 45 30 0.286 39.4 81.1
V-2 L 0.25 39 30 0.290 31.2 73.5
Standard deviation of quality attributes between manufacturing scales (σscale) 0.008 4.5 3.9

Table 3. Input Parameters and Output Properties of Small-Scale DoE

Input process parameter Output quality attribute

X1 X2 Y1 Y2 Y3

Froude number Rotation speed in V-1 L 
(rpm)

Blending time  
(min) Compression rate Hardness  

(N)
Dissolution rate at 30 min 

(%)

0.10 29 2 0.340 71.7 90.2
0.10 29 30 0.320 51.6 85.0
0.10 29 58 0.289 37.8 81.1
0.25 45 2 0.345 67.3 89.1
0.25 45 30 0.286 39.4 81.1
0.25 45 58 0.242 24.2 75.6
0.40 57 2 0.339 60.3 86.3
0.40 57 30 0.255 31.0 77.4
0.40 57 58 0.240 21.9 67.8
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where μ1 and σ1 are the average and standard deviation of the 
posterior probability distribution, μ0 and σ0 are the average 
and standard deviation of the prior probability distribution, 
and yave and s are the average and standard deviation of the 
likelihood distribution, respectively. The average of the pos-
terior probability (μ1) is the internally dividing value of the 
averages of the prior probability and likelihood with the stan-
dard deviation of the two values. The variance of the posterior 
probability (σ1

2) is the harmonic average of the variance of the 
prior probability and likelihood, which means that the reliabil-
ity of the posterior probability is higher than that of the prior 
probability and likelihood.

Construction of Response Surfaces and Design Space on 
a Large-Scale Using Bayesian Estimation  The Bayesian 
estimation process is shown in Fig. 2. The value of each qual-
ity attribute expressed by the response surfaces in a certain 
condition was regarded as the average of the prior probability.

In our previous report,25) only the standard deviation of the 
response surfaces calculated by the bootstrap resampling was 
considered as the standard deviation of the prior probability:
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where σmodel is the standard deviation of the response surfaces 
calculated by the bootstrap resampling method. Then, we im-
proved the method to reflect the reliability of the scale-up rule 

as follows:
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where σscale is the standard deviation of the quality attrib-
utes when manufacturing was conducted at various small 
scales according to the scale-up rule. In order to calculate 
the likelihood, five batches of large-scale manufacturing were 
conducted. Three batches were performed under the simul-
taneously optimal condition to calculate standard deviation 
of the likelihood. For the other batches, two different condi-
tions were selected for performing the Bayesian estimation. 
Application of Bayesian estimation outside of the region of 
three large-scale manufacturing conditions can lead to poor 
prediction accuracy. Therefore, the two conditions should be 
far from the optimal condition and lead to the production of 
poor-quality tablets in order to correct the whole response 
surfaces across the edges of the design space. A small number 
of large-scale experiments could increase the predictive error 
of the estimated response surface. Therefore, the adequacy of 
using five large-scale experiments under three conditions was 
checked by the validation experiments described further.

The standard deviation of the likelihood was determined 
using the following equation, which can estimate the standard 
deviation from the range of the obtained data28):

 i ii iii i ii iii0.591 (max( , , ) min( , , ))s Y Y Y Y Y Y= ×   (9)

where Yi, Yii and Yiii are the quality attributes of the three 
large-scale experimental batches under the optimal condition. 
We considered that the calculated standard deviation was con-
stant under any manufacturing condition. If the assumption is 
wrong, the predictive error of the estimated response surface 
could increase. Therefore, the validity of the assumption was 
also verified by the after-mentioned validation experiments. 

Fig. 2. The Bayesian Estimation Process
a RS: response surface. XOptimal represents the simultaneously optimal condition and XChanged 1 and XChanged 2 represent the changed large-scale experimental conditions for 

the Bayesian estimation.
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Based on the information of the prior probability and likeli-
hood, the Bayesian estimate for the three input process param-
eters was calculated using Eqs. 7 and 8.

The small-scale response surfaces were corrected to gen-
erate the large-scale response surfaces using the following 
equation:

 1 2 1 2( , ) ( , )F X X a f X X b= × +   (10)

where F(X1, X2) and f(X1, X2) are functions expressing the 

large-scale and small-scale response surfaces, respectively, and 
a and b are correction coefficients. Because the small-scale 
response surfaces were nonlinear curves, the corrected re-
sponse surfaces were also nonlinear. The large-scale response 
surfaces should pass through three points of the Bayesian es-
timate. Therefore, the correction coefficients were determined 
by the least square method between the Bayesian estimates 
(objective variable) and the quality attributes estimated from 
the small-scale response surface (explanatory variable) for 
the three conditions. The least square method was performed 
using the statistical software JMP® 8 (SAS Institute Inc., NC, 
U.S.A.). The large-scale response surfaces were estimated by 
correcting the whole small-scale response surfaces using the 
calculated correction coefficients. The area where all quality 
attributes met the acceptance criteria in the large-scale manu-
facturing was superposed to establish a design space.

Validation of the Response Surfaces  Experiments to 
validate the estimated response surfaces were conducted on a 
large scale under three different conditions, which were dif-
ferent from the three large-scale experimental conditions used 
for the Bayesian estimation. These were located on the edge 
of the large-scale design space. The root mean square error 
of prediction (RMSEP) and bias were used as the indices for 
evaluating the accuracy of the response surfaces. RMSEP and 
bias were calculated using the following equations:
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where n is the number of validation experiments. RMSEP is 
an estimate of the typical difference between the predicted 
and actual values and bias is the average difference. The 
prediction accuracy of the models improved with decreasing 

Fig. 3. Response Surfaces for Quality Attributes on the Small Scale
(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) 

dissolution rate at 30 min (Y3). The solid line represents the edge of the acceptance 
area for each quality attribute.

Fig. 4. Design Space on the Small Scale
The solid line represents the edge of the small-scale design space. The sym-

bol (●) represents the simultaneously optimal condition, and (○) represents the 
changed large-scale experimental conditions for the Bayesian estimation.
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values of RMSEP and bias. Moreover, good validation results 
indicated that the number of large-scale experiments was ade-
quate.

Results and Discussion
Construction of Response Surfaces and Design Space 

on a Small Scale and Calculation of a Simultaneously 
Optimal Solution  The DoE design and the results for the 
compression rate of the powder mixture (Y1), tablet hardness 
(Y2), and dissolution rate at 30 min (Y3) on the small scale are 
listed in Table 3. All of the output quality attributes varied in 
response to the changes in the input blending conditions. The 
response surfaces of the output quality attributes were gener-
ated by RSM-S as functions of two causal factors: the Froude 
number (X1) and the blending time (X2) (Fig. 3). The response 
surface indicated that an increase in the Froude number or 
blending time improved the flowability of the powder mix-
ture, as shown by the decrease in the compression rate. Thus, 
the tabletability would also improve. The area with a smaller 
Froude number and blending time did not meet the upper limit 
of the compression rate (0.320). Increasing the blending time 
resulted in good lubricant uniformity and reduced the tablet 
hardness and dissolution rate. The hardness met the lower 
limit (30 N) within the acceptance range. The dissolution rate 
met the lower limit (75%) in most of the experimental area. A 
design space on a small scale was determined as the common 
region of the three acceptance areas (Fig. 4). Furthermore, the 

simultaneously optimal solution was calculated to be an X1 of 
0.36 and an X2 of 21 min by using dataNESIA®.

Estimation of the Reliability of the Scale-Up Rule  The 
quality attributes of the theophylline tablets manufactured on 
the different small scales according to the scale-up rule are 
listed in Table 4. The standard deviation of the compression 
rate was small, which meant that powder flowability did not 
differ between the manufacturing scales as long as the Froude 
number was kept constant. Furthermore, standard deviations 
of the hardness and dissolution rate were large. These results 
indicated that the abovementioned quality attributes did not 
follow the scale-up rule.

Construction of Response Surfaces and Design Space on 
a Large Scale by Bayesian Estimation  In addition to the 
optimal condition (Xoptimal) estimated in the small-scale DoE 
study, we used two different conditions for the large-scale 
experiments for Bayesian estimation at points Xchanged 1 (0.10, 
2 min) and Xchanged 2 (0.40, 58 min) in the X1–X2 coordinates 
(Fig. 4). The points Xchanged 1 and Xchanged 2 were at the edge of 
the experimental range and far from the Xoptimal point. The 
condition Xchanged 1 was considered to lead to poor flowability 
of the powder mixture, and the condition Xchanged 2 was con-
sidered to produce tablets with a low hardness and dissolution 
rate. Furthermore, we thought that Bayesian estimations of 
Xoptimal, Xchanged 1, and Xchanged 2 made it possible to correct the 
whole response surfaces across the edges of the design space.

Quality attributes were predicted based on the small-scale 

Table 5. Results of the Large-Scale Experiments and Bayesian Estimation

Large-scale manufacturing condition Optimal Changed 1 Changed 2

X1 Froude number 0.36 0.10 0.40
Rotation speed in V-10 L (rpm) 38 20 40

X2 Time (min) 21 2 58
Y1 Compression rate

Predicted value from the small-scale RSa) Average (μ0) 0.284 0.340 0.240
SD (σmodel) 0.010 0.017 0.015
SD (σscale) 0.008 0.008 0.008

Experiment data in the large scale Individual 0.286, 0.277, 0.270 0.340 0.236
Average (yave) 0.278 0.340 0.236
SD (s) 0.009

Bayesian estimateb) Average (μ1) 0.279 0.340 0.237
SD (σ1) 0.005 0.008 0.008

Y2 Hardness (N)
Predicted value from the small-scale RSa) Average (μ0) 40.9 71.7 21.9

SD (σmodel) 2.6 2.0 4.5
SD (σscale) 4.5 4.5 4.5

Experiment data in the large scale Individual 25.1, 29.7, 27.5 53.8 18.7
Average (yave) 27.4 53.8 18.7
SD (s) 2.7

Bayesian estimateb Average (μ1) 28.6 58.0 19.2
SD (σ1) 1.5 2.4 2.5

Y3 Dissolution rate at 30 min (%)
Predicted value from the small-scale RSa) Average (μ0) 81.4 90.2 67.8

SD (σmodel) 0.6 1.5 1.9
SD (σscale) 3.9 3.9 3.9

Experiment data in the large scale Individual 75.3, 75.8, 77.2 85.0 67.8
Average (yave) 76.1 85.0 67.8
SD (s) 1.1

Bayesian estimateb) Average (μ1) 76.2 85.4 67.8
SD (σ1) 0.6 1.1 1.1

a) RS: response surface. b) Calculated by using Eqs. 7 and 8.
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Fig. 5. Results of the Least-Square Approximation
(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2) and (c) dis-

solution rate at 30 min (Y3).

Fig. 6. Response Surfaces for the Quality Attributes on the Large Scale
(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) dis-

solution rate at 30 min (Y3). The dashed line represents the edge of the small-scale 
acceptance area, the dotted line represents the edge of the previously reported 
large-scale acceptance area, and the solid line represents the edge of the improved 
large-scale acceptance area.

Fig. 7. Design Space on the Large Scale
The dashed line represents the edge of the small-scale acceptance area, the dot-

ted line represents the edge of the previously-reported large-scale acceptance area, 
and the solid line represents the edge of the improved large-scale acceptance area. 
The symbol (□) represents large-scale experimental conditions for validation of the 
response surfaces.
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response surfaces at the three large-scale experimental con-
ditions (Xoptimal, Xchanged 1, and Xchanged 2). Standard deviations of 
the small-scale response surfaces under these three conditions 
were evaluated using the bootstrap resampling technique and 
SOM clustering (Table 5). Note that if a multiple linear regres-
sion analysis was applied as an RSM instead of an RSM-S, 
the standard error of the predicted value29) could be regarded 
as the standard deviation of the prior probability.

Five batches of large-scale experiments were carried out 
under the three large-scale experimental conditions (three 
batches under Xoptimal and one batch each under Xchanged 1 and 
Xchanged 2). The experimental values on the large scale are 
also summarized in Table 5. The compression rates in the 
large-scale experiments were consistent with those in the 
small-scale response surfaces. This result indicated that there 
were no differences in the flowability of the powder between 
the manufacturing scales as long as the Froude number was 
kept constant. However, the large-scale experiments showed 
lower tablet hardness and dissolution rate values than the 
small-scale response surfaces. This finding indicated that the 
scale-up rule of the Froude number was not suitable for the 
predicting tablet hardness and dissolution rate because the 
powder was lubricated immediately when produced on the 
large scale. Standard deviations of the likelihood were esti-
mated according to Eq. 9, from the maximum and minimum 
values of the three batches performed under the optimal 
conditions. Furthermore, considering small-scale prediction 
as the prior probability and large-scale data as the likelihood, 
we conducted Bayesian estimation using Eqs. 7 and 8 (Table 

5). The Bayesian estimates of tablet hardness and dissolution 
rate were similar to the large-scale data because we consid-
ered the reliability of the scale-up rule and emphasized on the 
likelihood.

The least square method was performed to compute the 
correction coefficients of Eq. 10 between the quality attribute 
estimated from the small-scale response surface and the Baye-
sian estimate for the three process parameters. The results of a 
regression analysis are shown in Fig. 5. Squares of the correla-
tion coefficients for all quality attributes were high (≥0.98). 
The regression equation for the compression rate was nearly 
“y=x” because compression rates on the small and large scales 
coincided. With regard to the hardness and dissolution rate, 
the primary regression coefficients were less than 1, and the 
regression intercepts were negative, which indicated lower 
values on the large scale.

The large-scale response surfaces were then established 
by correcting all the small-scale response surfaces based on 
the calculated regression equations shown in Fig. 5. The cor-
rected large-scale response surfaces are shown in Fig. 6. The 
acceptance area for the compression rate was unchanged. In 
contrast, the acceptance areas for the hardness and dissolution 
rate narrowed due to the scale-up because of the faster lubri-
cation process. The large-scale acceptance areas calculated 
by Eqs. 7 and 8 were narrower than the previously-reported 
acceptance areas25) calculated by Eqs. 5 and 6 because the 
small-scale knowledge was downplayed on the improved 
Bayesian estimation of quality attributes with discrepancy 
between the manufacturing scales. The acceptance areas were 

Table 6. Validation Results of the Response Surfaces at the Edge of the Design Space

Validation experiment number 1 2 3 RMSEP Bias

X1 Froude number 0.25 0.18 0.29
Rotation speed in V-10 L (rpm) 32 27 34

X2 Time (min) 32 16 11
Y1 Compression rate

Experiment data 0.273 0.309 0.319
Predicted value from the small-scale RSa) 0.282 0.322 0.322 0.009 −0.008

(−0.009)b) (−0.013) (−0.003)
Predicted value from the large-scale RSc) 0.278 0.320 0.320 0.007 −0.006

(−0.005) (−0.011) (−0.001)
Predicted value from the improved 

large-scale RSd)
0.280 0.320 0.320 0.008 −0.006

(−0.007) (−0.011) (−0.001)
Y2 Hardness (N)

Experiment data 29.6 47.0 43.7
Predicted value from the small-scale RSa) 37.9 56.4 55.7 10.0 −9.9

(−8.3) (−9.4) (−12.0)
Predicted value from the large-scale RSc) 32.2 49.6 48.9 3.7 −3.5

(−2.6) (−2.6) (−5.2)
Predicted value from the improved 

large-scale RSd)
29.7 44.4 43.9 1.5 0.8

(−0.1) (2.6) (−0.2)
Y3 Dissolution rate at 30 min (%)

Experiment data 74.5 83.9 82.4
Predicted value from the small-scale RSa) 80.6 86.0 85.9 4.2 −3.9

(−6.1) (−2.1) (−3.5)
Predicted value from the large-scale RSc) 78.6 83.2 83.0 2.4 −1.3

(−4.1) (0.7) (−0.6)
Predicted value from the improved 

large-scale RSd)
77.1 81.2 81.1 2.3 0.4

(−2.6) (2.7) (1.3)

a) RS: response surface. b) Error between actual and predicted value. c) Constructed by using Eqs. 5 and 6. d) Constructed by using Eqs. 7 and 8.
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superposed to construct a large-scale design space (Fig. 7). 
The large-scale design space also narrowed as the Bayesian 
estimation improved.

Validation of the Response Surfaces  We used three dif-
ferent conditions on the edge of the calculated large-scale de-
sign space for the validation experiments (Fig. 7). The results 
of these experiments for the response surfaces on the edge of 
the design space are summarized in Table 6. Regarding the 
compression rate for the powder mixture, all the response 
surfaces showed good and equivalent RMSEP and bias. This 
finding indicated that all the response surfaces had high es-
timation accuracy because no scale effect was involved. With 
regard to tablet hardness and dissolution rate, the renewed 
large-scale design space had higher prediction accuracy than 
the small-scale and previously-reported large-scale design 
spaces25) because of the precise Bayesian estimation and cor-
rection of the discrepancy in the quality attributes between 
the manufacturing scales. We concluded that an accurate 
large-scale design space can be constructed by Bayesian esti-
mation using the reliabilities of response surface models and 
scale-up rules without a large-scale DoE study, irrespective of 
the accuracy of the scale-up rule. Moreover, the good valida-
tion result indicated the adequacy of the number of large-scale 
experiments and the validity of the assumption that the stan-
dard deviation of the quality attribute was constant under any 
manufacturing condition.

Conclusion
A design space for the lubricant blending process for the-

ophylline tablets was constructed on a large scale by using 
Bayesian estimation method based on the reliability of the 
scale-up rule. We confirmed that the corrected large-scale de-
sign space had higher prediction accuracy regardless of varia-
tion in the pharmaceutical quality between the manufacturing 
scales attributable to the improved Bayesian estimation.
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