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Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation 
method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant 
blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manu-
facturing process in order to construct design spaces. The DoE was conducted using various Froude numbers 
(X1) and blending times (X2) for theophylline 100-mg tablet. The response surfaces, design space, and their 
reliability of the compression rate of the powder mixture (Y1), tablet hardness (Y2), and dissolution rate (Y3) of 
the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, 
and self-organizing map clustering. Three experiments under an optimal condition and two experiments 
under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of 
the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using 
the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions 
of lower-strength tablets showed that the corrected design space made it possible to predict the quality of 
lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is 
useful for constructing design spaces of tablets with multiple strengths.
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The International Conference on Harmonization (ICH)1) has 
outlined Quality by Design (QbD) as a systematic approach 
to development that begins with predefined objectives and 
emphasizes product and process understanding and process 
control, based on sound science and quality risk manage-
ment. According to the QbD principle, pharmaceutical quality 
should not be tested via day-to-day release testing, instead, it 
should be elaborated by design in advance. One of the most 
significant aspects in the QbD concept is the establishment of 
a design space based on a multidimensional combination of 
input formulation parameters, process parameters, or material 
attributes that have been shown to provide assurance of qual-
ity attributes2).

A design of experiments (DoE) study has been effectively 
used in order to construct a design space.3,4) DoE is a use-
ful method for systematically understanding the relationship 
between input parameters and output quality attributes. A 
typical design space is established as a superposition of the re-
sponse surfaces for each quality attribute generated by the re-
sponse surface method (RSM) using the DoE results.5–11) RSM 
includes statistical analyses such as multiple linear regression 
analysis12) and artificial neural networks.13,14) Takayama et al. 
developed RSM-S, a novel RSM that incorporates multivariate 
spline interpolation.15) RSM-S is an effective tool for obtain-
ing reliable response surfaces of nonlinear phenomena and 
calculating optimal solutions. A bootstrap resampling tech-
nique and self-organizing map (SOM) clustering have been 
adopted to qualify the reliability of an optimal solution16–18) 
and response surfaces.19)

In general, the components of commercial tablets contain-
ing the same active pharmaceutical ingredient are similar, 
regardless of the dose strength, because different strengths of 
tablets were developed on the basis of the same formulation 

development concept. However, the compositions vary among 
dose strengths, resulting in varying quality attributes, even 
when the tablets are manufactured in the same manner. Ac-
cordingly, the design space has to be shifted with increasing 
dose strength. Thus, a separate DoE study is required for each 
dose strength in order to establish a reliable design space; 
such a procedure is resource intensive. Therefore, it is nec-
essary to develop a simple and efficient method to construct 
design spaces for multiple-strength tablets.

Bayesian estimation based on posterior probability distribu-
tion can be used to estimate the probability of uncertain phe-
nomena. It finds applications in various fields such as informa-
tion technology, economics, and population pharmacokinetics 
in pharmaceutical sciences. The posterior probability distribu-
tion can be calculated from the prior probability distribution 
and a few additional data using Bayes’ theorem. Therefore, 
Bayesian estimation can correct a prior highest-strength de-
sign space to a posterior lower-strength design space by using 
a few lower-strength experimental data.

Previously, we reported that a reliable large-scale design 
space was constructed using a Bayesian estimation method 
with a small-scale DoE and five batches of large-scale man-
ufacturing data, without enforcing a large-scale DoE.20,21) 
The large-scale design space was more reliable than the 
small-scale design space, in spite of some discrepancy in the 
pharmaceutical quality between the manufacturing scales.

In this study, we conducted Bayesian estimation with the 
highest-strength design space and five batches of manufac-
turing data for each lower-strength tablet in order to con-
struct a lower-strength design space without conducting a 
lower-strength DoE study. We selected the lubrication process 
for theophylline tablets as a model experiment for the design 
space construction. In addition, we validated the reliability of 
the estimated design space for predicting lower-strength man-
ufacturing by comparing the estimated design space with the 
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highest-strength design space.

Experimental
Figure 1 shows the setup for a lower-strength design space 

using Bayesian estimation. We constructed a Bayesian design 
space for the lubrication process of theophylline tablets, ap-
plied to lower-strength 50- and 25-mg tablets, by using the 
design space constructed on the basis of a DoE study of the 
highest-strength 100-mg tablet, with a limited number of low-
er-strength experimental data.

Materials  Theophylline (Hachidai Pharmaceutical Co., 
Japan), lactose monohydrate (Dilactose S®, Freund Corpora-
tion, Japan), cornstarch (Nihon Shokuhin Kako Co., Japan), 
microcrystalline cellulose (Ceolus® PH-101, Asahi Kasei 
Chemicals Co., Japan), and magnesium stearate (Mallinckrodt, 
Inc., U.S.A.) were used in all the experiments.

Preparation of Theophylline Tablets  Tablets containing 
100, 50, and 25 mg of theophylline were used in this study. 
They were produced using the direct compression method 
with the formulation shown in Table 1. The tablet size for each 
dose strength is the same.

All ingredients, except magnesium stearate, were blended at 
300 g scale in a 1-L V-shaped blender with a Froude number 
of 0.25 (rotating radius, 0.11 m; rotating speed, 45 rpm) for 
15 min. The blended mixture was sieved using a screening 
mill (Quadro® Comil®, Powrex Corporation, Japan; screen 
size, 0.991 mm; impeller rotating speed, 300 rpm). After add-
ing magnesium stearate, the mixture was blended to obtain 
the final blend in the 1-L V-shaped blender at various pre-
determined rotation speeds and times. The final blend was 
compressed with 8.5-mm biconvex round punches at 250-mg 
weight and 7-kN compression force per tablet using a 24-sta-
tion rotating tableting machine (Correct 24, Kikusui Co., 
Japan).

DoE in Highest-Strength Tablet  The Froude number (X1) 
and blending time (X2) were selected as input variables. The 
Froude number22) is defined as

 2( ) / 900Fr r πn g=   (1)

where r (m) is the rotating radius of the blender, n (rpm) is 
the rotating speed, and g (m/s2) denotes gravitational accelera-
tion. Nine experiments were conducted to obtain the response 
surfaces of each response variable according to the two-factor 
three-level (32) experimental design (Table 2).

Evaluation of Powder and Tablet Properties  The com-
pression rate of the powder mixture (Y1), tablet hardness (Y2), 
and dissolution rate in 30 min (Y3) were selected as the re-
sponse variables.

The compression rate (CR)23) is an indicator of powder flow-
ability, and it is defined as

 T L T(%) ( ) / 100CR ρ ρ ρ= ×   (2)

where ρT and ρL denote the tapped and loose densities of the 
powder (kg/m3), respectively. The tapped and loose densities 
of the mixture for tableting were measured using tap density 
equipment (SZ-02, Rinkan Co., Japan).

The hardness of the tablets was measured using a tablet 
hardness tester (Tablet tester Pharmatest WHT, Pharma Test 
Apparatebau, Austria). Dissolution testing was performed 
using a 50-rpm paddle and 900 mL of water at 37°C. The sam-
ple solution was assayed using an automated flow-through UV 

Fig. 1. Construction of Multiple-Dose Design Space Using Bayesian Estimation
X1, X2: input parameters, Y1, Y2, Y3: output quality attributes.

Table 1. Components and Composition of Theophylline Tablets

Components Quantity (mg/tablet)

Dose strength 100 mg 50 mg 25 mg

Theophylline 100 50 25
Lactose monohydrate 66.5 101.5 119
Cornstarch 28.5 43.5 51
Microcrystalline 

cellulose
50 50 50

Magnesium stearate 5 5 5

Total 250 250 250
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spectrophotometric method at 253 nm with a 10-mm-long cell 
(Automated dissolution apparatus, Toyama Sangyo Co. and 
Shimadzu Co., Japan). Three or six tablets were analyzed to 
calculate the average dissolution rate.

Construction of Response Surfaces and Design Space of 
100 mg Tablet and Calculation of Simultaneous Optimal 
Solution  RSM-S was carried out to construct the response 
surfaces and to calculate the simultaneous optimal solution 
in the highest-strength tablet using dataNESIA™ Version 3.0 
(Yamatake Corp., Tokyo, Japan). dataNESIA™ calculates the 
simultaneously optimal solution at which the sum of a gener-
alized distance between a predicted value and an individually 
optimal value in each quality attribute was minimized.15) The 
criteria for the quality attributes in this case study were set 
as follows: Y1=0.320 (upper limit), Y2=30 N (lower limit), and 
Y3=75% (lower limit). The acceptance areas for each quality 
attribute were superposed to determine a design space. The 
standard deviation of the response surfaces, which represented 
the reliability of the models, was evaluated via bootstrap res-
ampling and SOM clustering using dataNESIA™ and Viscov-
ery® (Eudapics Software Gmbh, Austria), respectively, accord-
ing to a previously reported method.17,18) Bootstrap resampling 
was performed 200 times.

Theory of Bayesian Estimation  Bayesian estimation is 
a methodology for constructing a posterior probability distri-
bution for an uncertain phenomenon. The posterior probabil-
ity distribution is computed on the basis of Bayes’ theorem 
by considering an assumed prior probability and likelihood 

estimated from newly observed data.
When the prior probability and likelihood are expressed as 

normal distributions, the posterior probability is also distrib-
uted normally.24) The average and standard deviation of the 
posterior probability distribution are expressed as
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where μ1 and σ1 are the average and standard deviation of the 
posterior probability distribution, μ0 and σ0 are the average 
and standard deviation of the prior probability distribution, 
yave and s are the average and standard deviation of the like-
lihood distribution, and n is the number of data obtained in 
order to calculate the likelihood, respectively. The average of 
the posterior probability, μ1, is the value that internally divides 
the averages of the prior probability and likelihood with the 
standard deviation of the two. The variance of the posterior 
probability, σ1

2, is the harmonic average of the variance of the 
prior probability and likelihood, which means that the reliabil-
ity of the posterior probability is higher than those of the prior 
probability and likelihood.

Construction of Response Surfaces and Design Space 
of Lower-Strength Tablet by Bayesian Estimation  The 

Fig. 2. Bayesian Estimation Process
a RS: response surface, XOptimal: simultaneous optimal condition, and XChanged 1 and XChanged 2: changed lower-strength experimental conditions for Bayesian estimation.

Table 2. Experimental Design and Properties of Highest-Strength Experiments

Input process parameter Output quality attribute

X1 X2 Y1 Y2 Y3

Froude number Rotation speed (rpm) Blending time (min) Compression rate Hardness (N) Dissolution rate in 
30 min (%)

0.10 29 2 0.340 71.7 90.2
0.10 29 30 0.320 51.6 85.0
0.10 29 58 0.289 37.8 81.1
0.25 45 2 0.345 67.3 89.1
0.25 45 30 0.286 39.4 81.1
0.25 45 58 0.242 24.2 75.6
0.40 57 2 0.339 60.3 86.3
0.40 57 30 0.255 31.0 77.4
0.40 57 58 0.240 21.9 67.8



1402 Vol. 60, No. 11

Bayesian estimation process is shown in Fig. 2. The value 
of each quality attribute expressed by the response surfaces 

of the highest-strength tablet was regarded as the average of 
the prior probability. The standard deviation of the response 
surfaces, calculated via bootstrap resampling, was considered 
to be the standard deviation of the prior probability. In order 
to calculate the likelihood, five batches of lower-strength man-
ufacturing were conducted. Three batches were manufactured 
under the simultaneous optimal condition to calculate the stan-
dard deviation of the likelihood. For the remaining two batch-
es, two different conditions were selected to perform Bayesian 
estimation. Applying Bayesian estimation outside the region 
of three lower-strength manufacturing conditions can result in 
poor prediction accuracy, whereas prediction near the edges 
of the design space should have high accuracy. Therefore, two 
different conditions were set in the experimental area outside 
the design space, far from the optimal condition, in order to 
interpolate the response surfaces near the edges of the design 
space. A smaller number of lower-strength experiments may 
result in a larger predictive error in the estimated response 
surface. Therefore, the adequacy of five lower-strength ex-
periments was verified by conducting validation experiments, 
which are described later.

The standard deviation of the likelihood(s) was determined 
using the equation

 i ii iii i ii iii0.591 (max( , , ) min( , , ))s Y Y Y Y Y Y= ×   (5)

where Yi–Yiii are the quality attributes obtained from the 
three lower-strength experimental batches under the optimal 
condition. This equation can be used to estimate the standard 
deviation from the range of the obtained data.25) We assumed 
that the calculated standard deviation was constant under 
all manufacturing conditions. If the assumption is wrong, 
the predictive error of the estimated response surface could 
increase. Therefore, the validity of the assumption was also 
verified by the after-mentioned validation experiments. Based 
on the information for the prior probability and likelihood, the 
Bayesian estimate for the three input process parameters was 
calculated using Eqs. 3 and 4.

The response surfaces of the highest-strength tablet were 
corrected to generate the lower-strength response surfaces 
using the equation

Fig. 3. Response Surfaces for Quality Attributes of Highest-Strength 
Tablets

(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) dis-
solution rate in 30 min (Y3), solid line: edge of the acceptance area for each quality 
attribute.

Fig. 4. Design Space of Highest-Strength Tablets
Solid line: edge of the highest-strength design space, (●): simultaneous optimal 

condition, and (○): changed lower-strength experimental conditions for Bayesian 
estimation.
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 1 2 1 2( , ) ( , )F X X a f X X b= × +   (6)

where F(X1, X2) and f(X1, X2) are functions expressing the 
response surfaces of the lower-strength and highest-strength 
tablet, respectively, and a and b are correction coefficients. 
Because the response surfaces of the highest-strength tablet 
are nonlinear curves, the corrected response surfaces are also 
nonlinear. The lower-strength response surfaces should pass 
through three points of the Bayesian estimate. Therefore, 
the correction coefficients were determined by applying the 
least-squares method between the Bayesian estimates (objec-
tive variable) and the quality attributes estimated from the 
response surface of the 100-mg tablet (explanatory variable) 
for the three conditions. The least-squares method was imple-
mented using the statistical software JMP® 8 (SAS Institute 
Inc., NC, U.S.A.). The lower-strength response surfaces were 
estimated by correcting the entire response surfaces of the 
100-mg tablet using the calculated correction coefficients. The 
areas in which each quality attribute fulfilled the acceptance 
criteria for the lower-strength tablet were superposed to con-
struct a design space.

Validation of Response Surfaces  Experiments were 
conducted to validate the estimated response surfaces of the 
lower-strength tablets under three different conditions, which 
were different from the three experimental conditions used 
for Bayesian estimation. The validation experiments were con-
ducted at 300 g scale in a 1-L V-shaped blender as same as the 

experiments for Bayesian estimation. These experimental con-
ditions were located on the edges of the design spaces of the 
lower-strength tablets. Root mean square error of prediction 
(RMSEP) and bias were used as the evaluation indices for the 
accuracy of the response surfaces. They were calculated using 
the equations
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where n is the number of validation experiments. RMSEP is 
an estimate of the typical difference between predicted and 
actual values, whereas bias is the average difference. The pre-
diction accuracy of the models improved as RMSEP decreased 
and bias approached zero.

Results and Discussion
Construction of Response Surfaces and Design Space of 

Highest-Strength Tablet and Calculation of Simultaneous 
Optimal Solution  The DoE parameters and the results, 
namely, the compression rate of the powder mixture (Y1), 
tablet hardness (Y2), and dissolution rate in 30 min (Y3) of the 

Table 3. Results of Experiments and Bayesian Estimation of 50-mg Theophylline Tablet

Manufacturing condition Optimal Changed 1 Changed 2

X1 Froude number 0.36 0.10 0.40
X2 Time (min) 21 2 58

Y1 Compression rate
Predicted value from the RSa) of 100-mg tablet Average (μ0) 0.284 0.340 0.240

SDb) (σ0) 0.010 0.017 0.015
Experiment data in 50-mg tablet manufacturing Individual 0.260, 0.260, 0.256 0.319 0.209

Average (yave) 0.259 0.319 0.209
SD (s) 0.002c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 0.259 0.319 0.210

SD (σ1) 0.001 0.002 0.002
Y2 Hardness (N)

Predicted value from the RS of 100-mg tablet Average (μ0) 40.9 71.7 21.9
SD (σ0) 2.6 2.0 4.5

Experiment data in 50-mg tablet manufacturing Individual 36.2, 34.8, 34.0 68.4 22.2
Average (yave) 35.0 68.4 22.2
SD (s) 1.3c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 35.5 69.4 22.2

SD (σ1) 0.7 1.6 1.2
Y3 Dissolution rate in 30 min (%)

Predicted value from the RS of 100-mg tablet Average (μ0) 81.4 90.2 67.8
SD (σ0) 0.6 1.5 1.9

Experiment data in 50-mg tablet manufacturing Individual 97.4, 97.0, 96.1 97.4 97.6
Average (yave) 96.8 97.4 97.6
SD (s) 0.8c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 91.4 95.9 93.4

SD (σ1) 0.4 0.7 0.7

a) RS: response surface. b) SD: standard deviation. c) The s value computed from the three batch experiments in the optimal condition was used in order to calculate the 
Bayesian estimates in all conditions.
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highest-strength 100-mg tablet, are listed in Table 2. All the 
output quality attributes varied in response to the changes in 
the input blending conditions. The response surfaces of the 
output quality attributes were generated by RSM-S as func-
tions of two causal factors: the Froude number (X1) and blend-
ing time (X2) (Fig. 3). The response surface indicated that an 
increase in the Froude number or blending time improved the 
flowability of the powder mixture, as indicated by the de-
crease in the compression rate. Thus, the tabletability could be 
improved. For an area with a small Froude number and blend-
ing time, the upper limit of the compression rate (0.320) was 
not met. An increase in the blending time resulted in good 
lubricant dispersibility and reduced the tablet hardness and 
dissolution rate. The hardness met the criterion (30 N) within 
the acceptance range. The dissolution rate met the lower limit 
(75%) in most of the experimental area. The design space of 
the highest-strength tablets was determined to be a common 
region of the three acceptance areas (Fig. 4). Furthermore, the 
simultaneously optimal solution was calculated to be an X1 of 
0.36 and an X2 of 21 min by using dataNESIA™.

Construction of Response Surfaces and Design Spaces 
of Lower-Strength Tablets Based on a Bayesian Estima-
tion  In addition to the optimal condition (Xoptimal) estimated 
via the highest-strength DoE study, we selected two different 
conditions for the lower-strength experiments for Bayesian 
estimation at points Xchanged 1 (0.10, 2 min) and Xchanged 2 (0.40, 

58 min) in the X1–X2 coordinate-system (Fig. 4). The points 
Xchanged 1 and Xchanged 2 were on the edge of the experimental 
range and far from Xoptimal. The condition Xchanged 1 was con-
sidered to represent poor flowability of the powder mixture, 
and the condition Xchanged 2 represented tablets produced with 
low hardness and dissolution rate. It was assumed that the 
Bayesian estimations of Xoptimal, Xchanged 1, and Xchanged 2 made 
it possible to correct the entire response surfaces across the 
edges of the design space.

The quality attributes were predicted on the basis of the 
highest-strength response surfaces in the three lower-strength 
experimental conditions (Xoptimal, Xchanged 1, and Xchanged 2). The 
standard deviations of the highest-strength response surfaces 
under these three conditions were evaluated via bootstrap re-
sampling and SOM (Tables 3, 4). Note that if multiple linear 
regression analysis is applied as a response surface method in-
stead of RSM-S, the standard error of predicted value26) could 
be regarded as the standard deviation of the prior probability.

Five batches of lower-strength experiments were carried 
out under the three lower-strength experimental conditions 
(three batches under Xoptimal and one each under Xchanged 1 and 
Xchanged 2). The experimental values for the lower-strength 50- 
and 25-mg tablets are summarized in Tables 3 and 4, respec-
tively. The lower-strength experiments showed lower compres-
sion rates because theophylline powder has low flowability; 
a low proportion of theophylline in the powder for tableting 

Table 4. Results of Experiments and Bayesian Estimation of 25-mg Theophylline Tablet

Manufacturing condition Optimal Changed 1 Changed 2

X1 Froude number 0.36 0.10 0.40
X2 Time (min) 21 2 58

Y1 Compression rate
Predicted value from the RSa) of 100-mg tablet Average (μ0) 0.284 0.340 0.240

SDb) (σ0) 0.010 0.017 0.015
Experiment data in 25-mg tablet manufacturing Individual 0.245, 0.242, 0.240 0.295 0.200

Average (yave) 0.242 0.295 0.200
SD (s) 0.003c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 0.244 0.296 0.201

SD (σ1) 0.002 0.003 0.003
Y2 Hardness (N)

Predicted value from the RS of 100-mg tablet Average (μ0) 40.9 71.7 21.9
SD (σ0) 2.6 2.0 4.5

Experiment data in 25-mg tablet manufacturing Individual 34.7, 37.2, 37.4 67.6 18.2
Average (yave) 36.4 67.6 18.2
SD (s) 1.6c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 36.9 69.2 18.6

SD (σ1) 0.9 1.2 1.5
Y3 Dissolution rate in 30 min (%)

Predicted value from the RS of 100-mg tablet Average (μ0) 81.4 90.2 67.8
SD (σ0) 0.6 1.5 1.9

Experiment data in 25-mg tablet manufacturing Individual 100.6, 100.2, 100.8 100.6 102.1
Average (yave) 100.5 100.6 102.1
SD (s) 0.4c)

Number of data (n) 3 1 1
Bayesian estimate Average (μ1) 98.5 100.0 100.9

SD (σ1) 0.2 0.3 0.3

a) RS: response surface. b) SD: standard deviation. c) The s value computed from the three batch experiments in the optimal condition was used in order to calculate the 
Bayesian estimates in all conditions.
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indicated higher flowability and a low compression rate. The 
tablet hardness also decreased with decreasing dose strength. 
The dissolution rates of the lower-strength experiments were 
higher than the highest-strength response surfaces and approx-
imately constant under all manufacturing conditions. These 
results indicated that the quality attributes vary significantly 

among the dose strengths.
The standard deviations of the likelihood were estimated 

from the maximum and minimum values of the three batches 
performed under the optimal conditions according to Eq. 5. 
Then, considering the highest-strength prediction as the prior 
probability and the lower-strength data as the likelihood, we 

Fig. 5. Results of Least-Square Approximation of 50-mg Theophylline 
Tablet

(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) 
dissolution rate in 30 min (Y3).

Fig. 6. Results of Least-Square Approximation of 25-mg Theophylline 
Tablet

(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) 
dissolution rate in 30 min (Y3).
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Fig. 7. Response Surfaces for Quality Attributes of 50-mg Theophyl-
line Tablet

(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) 
dissolution rate in 30 min (Y3), solid line: edge of the acceptance area of 50-mg 
theophylline tablet, dashed line: edge of the acceptance area of 100-mg theophyl-
line tablet.

Fig. 8. Response Surfaces for Quality Attributes of 25-mg Theophyl-
line Tablet

(a) Compression rate of powder mixture (Y1), (b) tablet hardness (Y2), and (c) 
dissolution rate in 30 min (Y3), solid line: edge of the acceptance area of 25-mg 
theophylline tablet, dashed line: edge of the acceptance area of 100-mg theophyl-
line tablet.
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conducted Bayesian estimation using Eqs. 3 and 4 (Tables 3, 
4).

The least-squares method was applied between the qual-
ity attributes estimated from the highest-strength response 
surface and the Bayesian estimate for the three process pa-
rameters to compute the correction coefficients of Eq. 6. The 
results of a regression analysis are shown in Figs. 5 and 6. 
Squares of the correlation coefficients (R2) for the compres-
sion rate of the powder mixture and tablet hardness were high 
(≥0.99), whereas R2 value for the dissolution rate were much 
lower owing to the small variance in the Bayesian estimate of 
the dissolution rate. The need for a high R2 value for precise 

Bayesian estimation was confirmed by constructing the fol-
lowing lower-strength response surfaces for the dissolution 
rate and their validation experiments.

Then, the lower-strength response surfaces were established 
by correcting all the highest-strength response surfaces on 
the basis of the calculated regression equations. The corrected 
response surfaces of the 50- and 25-mg theophylline tablets 
are shown in Figs. 7 and 8, respectively. The acceptance areas 
for the compression rate and dissolution rate were broadened 
with decreasing dose strength. In contrast, the lower-strength 
acceptance area for hardness was slightly narrowed because 
of the decrease in compactability. The acceptance areas were 
superposed to construct a lower-strength design space (Fig. 9). 
The design space was extended and shifted in the direction of 
shorter blending time.

The design space of each dose-strength tablet constructed 
in 1-L V-blender scale can be further corrected to design 
spaces in commercial scale by performing five batches of 
commercial-scale experiments and conducting second Baye-
sian estimation according to previously reported methods.20,21)

Validation of Response Surfaces  Three conditions on the 
edge of the calculated lower-strength design space were em-
ployed for the validation experiments of each lower-strength 
tablet (Fig. 9). The validation results for the response surfaces 
of the 50- and 25-mg tablets on the edge of the design space 
are summarized in Tables 5 and 6, respectively. The estimated 
design space for both the lower-strength tablets had higher 
prediction accuracy in terms of all the quality attributes 
because of Bayesian estimation and the correction of the dis-
crepancy in the quality attributes of dose strengths.

High prediction accuracy of the estimated design space 
for the dissolution rate indicated that Bayesian estimation 
of design spaces can be performed even if a R2 value of the 
least-square approximation is low. The good validation result 
indicated the adequacy of the number of lower-strength ex-
periments and the validity of the assumption that the standard 

Fig. 9. Comparison of Design Spaces of Theophylline Tablets with Dif-
ferent Dose Strengths

Dashed line: edge of the design space of 100-mg theophylline tablet, solid and 
bold lines: edges of 50- and 25-mg theophylline tablets, respectively, square: lower-
strength experimental conditions for validation of the response surfaces.

Table 5. Validation Results of Response Surfaces of 50-mg Theophylline Tablet at the Edge of the Design Space

Validation experiment number 1 2 3

RMSEP BiasX1 Froude number 0.25 0.10 0.33
X2 Time (min) 41 15 2

Y1 Compression rate
Experiment data 0.245 0.309 0.321
Predicted value from the RSa) of 50-mg tablet 0.239 0.308 0.322 0.004 0.002

(0.006)b) (0.001) (−0.001)
Predicted value from the RS of 100-mg tablet 0.266 0.330 0.342 0.021 −0.021

(−0.021) (−0.021) (−0.021)
Y2 Hardness (N)

Experiment data 30.3 54.1 67.3
Predicted value from the RS of 50-mg tablet 30.2 58.6 60.2 4.9 0.9

(0.1) (−4.5) (7.1)
Predicted value from the RS of 100-mg tablet 32.2 61.7 63.4 5.1 −1.9

(−1.9) (−7.6) (3.9)
Y3 Dissolution rate in 30 min (%)

Experiment data 98.5 98.7 97.1
Predicted value from the RS of 50-mg tablet 93.5 94.3 94.3 4.2 4.1

(5.0) (4.4) (2.8)
Predicted value from the RS of 100-mg tablet 78.8 87.5 87.8 14.1 13.4

(19.7) (11.2) (9.3)

a) RS: response surface. b) Error between actual and predicted value.
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deviation of the quality attribute was constant under any man-
ufacturing condition.

It was concluded that an accurate lower-strength design 
space can be constructed by Bayesian estimation without 
adopting a lower-strength DoE study, irrespective of the coin-
cidence of quality attributes between the dose strengths.

Conclusion
Design spaces for the lubricant-blending process for mul-

tiple dose strengths of tablets were successfully constructed 
using a Bayesian estimation with one set of design of exper-
iments (DoE) of only the highest dose-strength tablet. It was 
confirmed that the corrected lower-strength design space had 
higher prediction accuracy, even if there was some discrepan-
cy in the pharmaceutical quality between dose strengths.
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Table 6. Validation Results of Response Surfaces of 25-mg Theophylline Tablet at the Edge of the Design Space

Validation experiment number 1 2 3

RMSEP BiasX1 Froude number 0.25 0.10 0.33
X2 Time (min) 39 15 2

Y1 Compression rate
Experiment data 0.226 0.286 0.314

Predicted value from the RSa) of 25-mg tablet
0.230 0.287 0.299 0.009 0.003

(−0.004)b) (−0.001) (0.015)

Predicted value from the RS of 100-mg tablet
0.270 0.330 0.342 0.039 −0.039

(−0.044) (−0.044) (−0.028)
Y2 Hardness (N)

Experiment data 31.1 53.4 65.4

Predicted value from the RS of 25-mg tablet
29.8 58.8 60.5 4.3 0.3
(1.3) (−5.4) (4.9)

Predicted value from the RS of 100-mg tablet
33.3 61.7 63.4 5.1 −2.8
(2.2) (−8.3) (2.0)

Y3 Dissolution rate in 30 min (%)
Experiment data 102.2 102.9 99.6

Predicted value from the RS of 25-mg tablet
102.3 100.8 100.8 1.4 0.3
(−0.1) (2.1) (−1.2)

Predicted value from the RS of 100-mg tablet
79.2 87.5 87.8 17.4 16.7

(23.0) (15.4) (11.8)

a) RS: response surface. b) Error between actual and predicted value.
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