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Abbreviations

Chemical substances and drugs

BCA: Bicinchoninate

DAMGO: [D-Ala2,N-Me-Phe`,Gly5-ol]enkephalin

DHPG: 3,5-Dihydroxyphenylglycine

EDTA: Ethylenediaminetetraacetic acid

EGTA: Ethylene glycol-bis (2-aminoethylether)-N,N,N',N',-tetraacetic acid

PPF: Propentofy11ine

SDS: Sodium dodecyl sulfate

MPEP: Methyl-6-(phenylethynyl)-pyridine hydrochloride

Buffers

PBS: Phosphate-buffered saline

TBS: Tris-buffered saline

TTBS: Tween 20-TBS

Endogenous substances

ATP: Adenosine 5'-triphosphate

BDNF: Brain-derived neurotrophic factor

DAG: Diacylglycerol

IL: Interleukin

IP3: Inositol (1,4,5)-triphosphate

PG: Prostaglandin

TNF: Tumor necrosis factor

Enzymes and intracellular messengers

GRK: G-protein coupled receptor kinase

PKC: Protein kinase C

PLC: Phospholipase C

p-cPKC: Phosphorylated-conventional PKC

MAPK: Mitogen-activated protein kinase
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Receptors

AMPA: ct-Amino-3-hydroxy-5-methyl-4-isoxazole propionate

GPCR: G-protein coupled receptor

iGluR: Ionotropic glutamate receptor

mGluR: Metabotropic glutamate receptor

NMDA: N-methyl-D-aspartate

Serum

NGS: Normal goat serum

NHS: Normal horse serum

Injection route

i.t.: Intrathecal

s.c.: Subcutaneous

Others

ANOVA: Analysis of variance

ACM: Astrocyte-conditioned medium

B..: Binding maximum

DMEM: Dulbecco's modified Eagle's medium

EGFP: Enhanced green fluorescent protein

GFAP: Glial fibri11ary acidic protein

IR: Immunoreactivity

Kd: Constant dissociation

LSN: Lateral spinal nucleus

LTD: Long term depression

LTP: Long term potentiation

MAP2afo: Microtubule associated protein 2a!b

MPE: Maximum possible effect

NeuN: Neuronal nuclei

SEM: Standard error mean
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                            General Introduction

Opioid receptors

   The plant alkaloids derived from the opium poppy will be referred to as opiates

(e.g., opium, heroin, morphine) and the broader class of related endogenous peptides

and receptors as opioids. Current research has shown that the administration of

opioids results in a variety of physiological processes such as analgesia, changes in

mood, respiratory depression, decreased gastrointestinal motility, nausea, vomiting and

alterations of neuroendocrine function and cardiovascular control. These diverse

effects of the opioid system are mediated by the activation of specific membrane

receptors in both neuronal and non-neuronal tissues.

   Pharmacological studies using peptide and alkaloid opioid ligands have identified

several classes of opioid receptors, including pt, 6 and K receptors i-3). In 1992, a 6-

opioid receptor was first cloned by two independent groups, Evans et al. `) and Kieffer

et al. 5). Following the cloning of the 6-opioid receptor, pt- and K-opioid receptors

have been cloned in the past several years 6-9). Studies on cDNA clones encoding

structurally related receptors with amino acid have suggested the similarity of these

three receptor genes as high as 65 91o iO'i'). The cloning of these opioid receptor types

revealed that they are members of the G-protein-coupled receptor (GPCR) superfamily.

Opioid receptors are coupled to pertussis toxin-sensitive Gilo protein, which is linked

functionally to the inhibition of adenylyl cyclase activity, the activation of receptor-

operated K' currents, and the suppression of voltage-gated Ca2' currents i2-i4).
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Recently, it has been demonstrated that opioid receptors

second-messenger systems, including the activation of

(MAP) kinases and the phospholipase C (PLC)/protein

cascade, through the Py subunits of their G protein i5-i7).

may be coupled to other

mitogen-activated protein

kinase C (PKC)-mediated

Opioid tolerance

   Opioids have been recommended as the drug of choice for the management of

patients with chronic cancer pain by Cancer Pain Relief Program of the World Health

Organization Cancer Unit i8). However, opioids also have undesirable effects, such as

tolerance, physical and psychological dependence.

   Tolerance can be described as an adaptation of a biological system to the continued

or repeated effects of a drug and defined as a loss of potency of a drug after its repeated

administration. In the field of opioids, the concept of tolerance is usually equated

with the phenomenon termed "chronic tolerance", i.e., tolerance which (1) is induced

by the repeated administration of opioid agonist and (2) refers to a state in which it is

necessary to increase the dose to achieve the original effects.

   The development of chronic tolerance is characteristic of all opioids with agonist

activity, regardless of the type of receptor with which they interact. Tolerance to

opioids first becomes evident as a shortening of the duration of drug action and a

diminution of the peak effects. The rate at which tolerance develops depends on the

pattern of use and the characteristics of the opioids used. Significant tolerance only

develops when there is a continuous drug action.
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p-Opioid receptor desensitization

   Desensitization is defined as the progressive loss of receptor function under

continued exposure to an agonist. Receptor activation often leads to the removal of

receptors from the cell surface by internalization, and less often, to recruitment of new

receptors to the cell surface. Internalized receptors can be recycled to the cell surface

(resensitization) for further duty or targeted for degradation in lysosomes (down-

regulation). Prolonged stimulation generally leads to a profound receptor loss from the

cell surface '9'20). One major mechanism controlling GPCR responsiveness is the

activation-dependent regulation of receptors, which is called homologous

desensitization 2"22). Other mechanisms also connibute to the intrinsic regulation of

GPCR signaling. These include receptor activation-independent regulation of

receptors, called heterologous desensitization, which results from regulating and

altering the signaling efficiency of downstream effectors '9• 23).

   Like other GPCRs, pt-opioid receptor can undergo rapid agonist-mediated

internalization via a classic endocytic pathway. Opioid-receptor internalization is

mediated, at least partially, by the actions of G-protein coupled receptor kinase (GRK).

GRKs selectively phosphorylate agonist-bound receptors thereby promoting

interactions with 6-arrestin, which interfere with G protein coupling and promote

receptor internalization 2`-27). Although a great deal has been learned about the

mechanism mediating the initial endocytosis of certain GPCRs including pt-opioid
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receptor from the plasma membrane, a little is known about mechanisms underlying

the development of tolerance to morphine-induced antinociception.

Protein kinase C (PKC)

   PKC, which is activated by 1,2-diacylglycerol in the presence of Ca2" and

phospholipids, acts as a key enzyme for signal transduction in various physiological

processes 28-30). The protein phosphorylation catalyzed by PKC may exert profound

modulation of various processes, such as the release of neurotransmitters, cell

proliferation and differentiation, potentiation and desensitization of several kinds of

receptor systems 28-30). Recent studies have revealed a family of closely related

proteins subdivided on the basis of certain structural and biochemical similarities: Ca2'-

dependent or conventional isoforms (PKCa, PI, PII and y; cPKCs), Ca2'-independent or

novel isoforms (PKC6, E, n and e; nPKCs), and atypical isoforms (PKCX and ig;

aPKCs) 3i'32). PKCa, PI, 6II, y, E 6 and ig isoforms have been identified in the brain

and spinal cord. The various isoforms appear to be differentially distributed in the

mammalian central nervous system, with cell type and cellular component specificity

33,34).

   Considerable evidence suggests that the activation of PKC in the spinal cord

modulates the enhancement of neuronal excitability, which results in nociceptive pain

perception 35-38). It has been reported that activation of PKCy isoform in the dorsal

horn of the spinal cord is involved in the development of tolerance to morphine-induced

antinociception and the enhancement of nociceptive responses 39'`i). These findings
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strongly suggest that PKCy isoform in the spinal cord may play

modulating nociceptive transmission and neuronal plasticity.

an important role in

Astrocytes

   Cell interactions are obviously the basis of function of the nervous system as much

as of the function of any other body system. It was thought for a long time that the

relevant cell interactions for brain function were those of neurons with other neurons.

Now it is more and more evident that taking into consideration the interactions of

neurons with glial cells is essential to understand how the brain works. Neuron-glia

cross talk appears to be fundamental for the most basic phenomenon in the nervous

system, that is, the transfer of information by chemical synapses 42).

   Astrocytes are the principal type of glial cell and are known to support the

proliferation, survival and maturation of developing neurons. In the mature

mammalian brain, astrocytes constitute nearly half of the total cells, providing

structural, metabolic and trophic support for neurons `3). There is a 1arge body of

evidence indicating that astrocytes possess a wide variety of voltage-gated ion channels

and functional receptors for neurotransmitters 44-46). Activation of astrocytes receptors

induces the synthesis and release of substances capable of modulating the surrounding

cells, including neurons `"`8). This evidence suggests the idea that astrocytes are

responsive to their environment and that they have the potential to modulate neuronal

activity in response to neuronal and synaptic activities. Furthermore, considerable

evidence suggests that the glial network may be quite important in maintaining the
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basal level of excitability of neuronal circuit, shaping its properties in an integrated

fashion. Perhaps the purpose of the glial network is to maintain the neuronal network

in a functional state that is adjusted from the previous experience of the glial and

neuronal networks. These findings suggest that two-way communication between

neurons and astrocytes plays a substantial role in the regulation of neuronal activity and

synaptlc transmlsslon.

GIutamate receptor

   Glutamate is the major excitatory neurotransmitter of the central nervous system.

The interaction of glutamate with its receptors is essential for the normal function of

the central nervous system, including cognition, sensation and memory. Glutamate

activates two major classes of receptors: ionotropic glutamate receptor (iGluR) and

metabotropic glutamate receptor (rnGluR). iGlu receptors are glutamate-gated ion

channels that, when activated, increase cationic flux (mainly Na' and K' and to a lesser

extent Ca2') across the neuronal membrane and thereby increase cellular excitability `9År.

iGluRs consist of the following receptor subtypes: N-methyl-D-aspartate (NMDA)

receptors containing NRI, NR2A-D and NR3A-B subunits; ct-amino-3-hydroxy-5-

methyl-4-isoxazole propionate (AMPA) receptors containing GluRl-4 subunits; and

kainate receptors containing GluR5-7, KAI and KA2 subunits. Initially, it was

believed that iGluRs were exclusively involved in gating glutamate-mediated

transmission. However, in the mid-1980s glutamate was shown to activate

intracellular signaling cascades in a GPCR-dependent manner 50), suggesting the

                                   6



existence of "metabotropic" glutamate receptors. Subsequently, eight mammalian

subtypes of mGluRs have been identified and classified into three groups (I, II and III)

5i•S2). Group I mGluRs (mGluRl and mGluR5) are predominately located in

postsynaptic neurons where they couple to Gq proteins to activate phospholipase C

(PLC). Group II mGluRs (mGluR2 and mGluR3) are found both pre- and

postsynaptically and are coupled to Gilo proteins to negatively regulate the activity of

adenylyl cyclase 52). Group III mGluRs (mGluR4, mGluR6, mGluR7 and mGluR8)

are predominately located presynaptically where they act as autoreceptors, and are also

coupled to Gilo proteins to decrease adenylyl cyclase activity 52'53). Recently, a

growing body of evidence suggests that changes in glutamate transmission are

associated with a number of central nervous system pathologic conditions, including

chronic pain, opioid tolerance and dependence.
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                                Aim and Scope

   The aim of the present study was to investigate the molecular mechanism of the

development of tolerance to morphine-induced antinociception in the mouse spinal cord.

Behavioral, neurochemical and biochemical experiments were conducted.

The specific aims of the proposed research are:

In Chapter 1:

   To clarify the distinct mechanisms of the effects of pt-opioid receptor agonists,

etorphine and morphine, on the development of tolerance to antinociception, I

investigated whether repeated in vivo administration of etorphine and morphine could

recruit receptor trafficking proteins to the plasma membrane by translocation from the

cytoplasm. Furthermore, I examined whether chronic in vivo or in vitro treatment with

etorphine or morphine could affect spinal astrocytes, which could be related to the

development of tolerance to etorphine- or morphine-induced antinociception.

In Chapter 2:

   This study was to investigate whether repeated in vivo treatment with morphine

could affect the immunoreactivity for PKCy in the dorsal horn of the mouse spinal cord

following repeated treatment with morphine. In addition, I examined the change in

expression of glial fibri11ary acidic protein (GFAP) following repeated in vivo treatment
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with morphine using the transgenic mice with GFAP promoter-controlled enhanced

green fluorescent protein (EGFP) expression. Furthermore, a direct approach with

PKCy knockout mice was used to investigate the influeRce of the PKCy gene deletion in

the astroglial response following repeated in vivo treatment with morphine in the dorsal

horn of the mouse spinal cord.

In Chapter 3:

   To clarify whether metabotropic glutamate receptor 5 (mGluR5) within the spinal

cord could be involved in the development of tolerance to morphine-induced

antinociception, the present study was undertaken to investigate the effect of selective

mGluR5 antagonist on the development of morphine tolerance in mice. I also

examined the changes in the number of and the immunoreactivity (IR) for mGluR5 in

the spinal cord of morphine-tolerant mice. In addition, I investigated the effect of

chronic treatment with morphine on the increase in the intracellular Ca2' concentration

induced by a selective group I mGluR agonist in primary spinal neurons.
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Ethics

   The present study was conducted in accordance with the Guiding Principles for the

Care and Use of Laboratory Animals, as adopted by the Committee on Animal Research

of Hoshi University, which is accredited by the Ministry of Education, Culture, Sports,

Science and Technology of Japan. Every effort was made to minimize the numbers

and any suffering of animals used in the following experiments. Animals were used

only once in the present study.
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Chapter 1

p-Opioid receptor internalization-dependent and -independent

mechanisms of the development of tolerance to p-opioid receptor

agonists: Comparison between etorphine and morphine
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Introduction

   The administration of opioids produces a powerful antinociceptionlanalgesia. It is

well known that long-term exposure to opioids results in tolerance to opioids-induced

antinociception, which is related to the receptor desensitization. Studies on 6-

adrenergic receptors 5`'SS), later extended to pt-opioid receptor, have shown that the

process of receptor desensitization results from a series of events beginning with

receptor phosphorylation, uncoupling with G-proteins and ending with receptor

internalization 25-2'). Agonist-induced activation of GPCR specifically activates G

protein-coupled receptor kinases (GRKs), probably through liberated G Py subunits 25'27).

GRKs phosphorylate serine and threonine in the carboxy terminus of the pt-opioid

receptor, This conformational change of the receptor increases its affinity for 6-arrestin.

The binding of 6-arrestin prevents the receptor from interacting with G proteins, leading

to desensitization. Clusters of receptor-6-arTestin complexes segregate on the cell

surface and internalize by a clathrin- and dynamin-dependent process 56). These reports

suggest that receptor desensitization results from several events ending with receptor

internalization. However, a number of observations have indicated that receptor

desensitization can occur in the absence of internalization. In addition, opioid agonists

exhibit remarkable differences in their ability to desensitize the pt-opioid receptor 5"oo).

Recently, it has been reported that chronic treatment with etorphine produces pt-opioid

receptor down-regulation associated with the increase in dynamin II protein in the spinal

cord, whereas chronic treatment with morphine does not change pt-opioid receptor
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density and trafficking proteins 6i'62). Considering these backgrounds, the detailed

molecular events underlying this differential regulation of the p-opioid receptor by

distinct agonist remain unclear.

   In the central nervous system, there are two categories of cells: neurons and glial

cells including astrocyte, microglia and oligodendrocyte. Two-way communication

between neurons and glial cells is considered to be essential for axonal conduction and

synaptic transmission 63). Expression of glial fibri11ary acidic protein (GFAP), a

cytoskeletal intermediate filament protein, is found almost exclusively in mature

astrocytes, and its specificity and abundance has made it the most commonly used

marker for astrocytes. While GFAP is known to be present in normal astrocytes, the

activated forms of astrocytes called reactive astrocytes are well known by the high level

of GFAP expression 6`). A growing body of evidence suggests that the activation of

spinal cord astrocyte is sufficient to create exaggerated pain states and identifies a

potential neuron-to-glia signal capable of driving pathological pain 65). Recently,

quantitative changes in level of GFAP can be observed in the spinal cord after chronic

administration of morphine 66'67). These findings suggest that astrocytes may play an

active role in the development of tolerance to morphine-induced antinociception and the

induction of neuronal plasticity,

   In the present study, I investigated whether repeated in vivo administration of pt-

opioid receptor agonists, etorphine and morphine, could recruit GRK 2, dynamin II, P-

arrestin 2 and phosphorylated-conventional PKC (p-cPKC), an active form of cPKC, to

the plasma membrane by translocation from cytoplasm. Furthermore, I also
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investigated whether chronic in vivo and in vitro treatment with etorphine or morphine

could affect the spinal astrocytes, which is related to the development of tolerance to

etorphine- or morphine-induced antinociception.
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Materials and Methods

Animals

   Male ICR mice weighing about 25 g (Tokyo Laboratory Animals Science Co., Ltd.,

Tokyo, Japan) at the beginning of the experiments were used in the present study.

Animals were housed in a room maintained at 23 Å} 1 OC with an alternating 12 hr light-

dark cycle. Food and water were available ad tibitum during the experimental period.

Drugs

   The drugs used were morphine hydrochloride (Sankyo Co., Tokyo, Japan), a

selective p-opioid receptor agonist [D-Ala2,N-Me-Phe`,Gly5-ol]enkephalin (DAMGO,

Sigma Chemical Co., St. Louis, MO) and propentofylline (PPF, Sigma Chemical Co.).

Etorphine hydrochloride was synthesized by Dr. T. Iwamura (Gifu Pharmaceutical

University, Gifu, Japan). All dmgs were dissolved in O.99o sterile saline.

Intrathecal injection

   Intrathecai (i.t.) injection was performed as described by Hylden and Wilcox 68)

using a 25-ptL Hamilton syringe with a 30 1/2-gauge needle. The needle was inserted

into the intervertebral space between L5 and L6 of the spinal cord. A refiexive fiick of

the tail was considered to be a sign of the accuracy of each injection. The injection

volume was 4 ptL for i.t. injection.
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Assessment of antinociception

   To investigate the development of antinociceptive tolerance following repeated

treatment with etorphine or morphine, mice were repeatedly s.c. injected with etorphine

(10 ptg/kg), morphine (10 mglkg) or saline (10 mLlkg) once a day for 7 consecutive

days. The etorphine- or morphine-induced antinociceptive response was evaluated by

recording the latency to paw licking or tapping in the hot-plate test (55 Å} O.5 eC,

Muromachi Kikai Co., Ltd., Tokyo, Japan). The hot-plate latencies were measured 15

min after saline or etorphine and 30 min after saline or morphine injection. To

investigate the effect of the glial-modulating agent, propentofy11ine (PPF, 5.0 mg/kg,

i.p,), on the development of tolerance to morphine- or etorphine-induced

antinociception, groups of mice were treated with PPF or saline once 30 min before

every morphine, etorphine or saline treatment. To examine the role of astrocyte-

released soluble factors and astrocytes in the development of tolerance to morphine- or

etorphine-induced antinociception, the cultured spinal astrocytes with astrocyte-

conditioned medium (astrocyteslACM) mixture was injected into the spinal cord.

Twenty-four hr after a single i.t. injection of astrocytes/ACM mixture or Dulbecco's

modified Eagle's medium (DMEM) treatment, mice were repeatedly injected with

morphine or etorphine for 7 consecutive days.

   To examine the functional change of pt-opioid receptor in the spinal cord following

repeated treatment with etorphine or morphine, mice were repeatedly s.c. injected with

etorphine (10 ptglkg), morphine (10 mg/kg) or saline (10 ml.lkg) once a day for 7

consecutive days. Twenty-four hr after the last injection, mice were i.t. injected with a
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selective p-opioid receptor agonist DAMGO. To ascertain the spinal antinociception,

DAM60-induced antinociception was determined by the tajl-fljck test (Muromachi

Kikai Co., LTD., Tokyo). The tail-flick latencies were measured 10 min after a single

i.t. injection of DAMGO. For measurement of the latency of the tail-flick response,

mice were held gently by hand with their tail positioned in an apparatus for radiant heat

stimulation on the dorsal surface of the tail.

   Antinociception was calculated as percentage of the maximum possible effect (9o

MPE) according to the following formula: 9o MPE = (test latency - pre-drug latency)/

(cut-off time - pre-drug latency) x 100. The cut-off time that was set at 30 sec for the

hot-plate test or 10 sec for the tail-flick test to prevent tissue damage. Antinociceptive

response is expressed as the mean 9o MPE with S.E.M. The EDso value was calculated

by GraphPad Prism Programs version 3.0 (GraphPad Software Inc., CA).

Western blotting

   Mice were repeatedly injected with etorphine (10 ptglkg s.c.), morphine (10 mglkg

s.c.) or saline (10 mLfkg s.c.) once a day for 7 days. Twenty-four hr after the last

injection, mice were sacrificed by decapitation. Their whole spinal cords were

removed quickly and homogenized in 10 volumes of ice-cold buffer containing 20 mM

Tris-HCI (pH 7.5), 2 mM ethylenediaminetetraacetic acid (EDTA), O.5 mh ethylene

glycol-bis (2-aminoethylether)-N,N,N',N',-tetraacetic acid (EGTA), 1 mM

phenylmethylsulfonyl fluoride, 25 ptglmL of leupeptin, O.1 mg/mL of aprotinin and O.32

M sucrose using a Potter-Elvehjem tissue grinder with a Teflon pestle. The
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homogenate was centrifuged at 1,000 x g for 10 min at 4 OC and the supematant was

ultracentrifuged at 100,OOO xg for 30 min at 4 eC. The pellets were then re-

homogenized and re-centrifuged at 100,OOO x g for 30 min at 4 eC. The resulting

pellets were retained as membrane fractions for subsequent analysis.

   An aliquot of tissue sample was diluted with an equal volume of electrophoresis

sample buffer (Protein Gel Loading Dye-2x; Amxesco, Solon, OH, USA) containing

2 9o sodium dodecyl sulfate (SDS) and 10 9o glycerol with O.2 M dithiothreitol.

Proteins (10-20 ptgllane) were separated by size on 4-20 9o SDS-polyacrylamide

gradient gel and transferred to a nitrocellulose membrane in a buffer containing 25 mM

Tris and 192 mh glycine. For immunoblot detection of GRK 2, dynamin II, P-arrestin

2 and p-cPKC, membranes were blocked in Tris-buffered saline (TBS) containing 5 9o

nonfat dried milk (Nakarai Tesque, Inc., Kyoto, Japan) for 1 hr at room temperature

with agitation. The membrane was incubated with primary antibody diluted in TBS

containing 5 9o nonfat dried milk [1:1000 GRK 2, dynamin II (Santa Cruz

Biotechnolo'gy, Inc., Santa Cruz, CA, USA), 1:500 P-arrestin 2 (Santa Cruz

Biotechnology, Inc.), and 1:1,OOO p-cPKC (Cell Signaling Technology Inc., Beverly,

MA, USA)] overnight at 4 eC. The membranes were washed in Tween 20-TBS

("I'TBS) and then incubated for 2 hr at room temperature with horseradish peroxidase-

conjugated goat anti-rabbit IgG and rabbit anti-goat IgG (Southern Biotechnology

Associates, Inc., Birmingham, AL, USA), which was diluted 1:10,OOO in TBS

containing 5 9o nonfat dried milk. After this incubation, the membranes were washed

in TTBS. The antigen-antibody-peroxidase complex was then finally detected by
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enhanced chemiluminescence (Pierce, Rockford, IL, USA) and visualized by exposure

to Amersham Hyperfilm (Amersham Life Sciences, Arlington Heights, IL, USA).

Film autoradiograms were analyzed and quantified by computer-assisted densitometry

using NIH Image.

Immunohistochemistry using spinal cord-slice sections

   Mice were repeatedly injected with etorphine, morphine and saline once a day for 7

consecutive days. Twenty-four hr after the last injection, mice were deeply

anesthetized with sodium pentobarbital (70 mglkg, i.p.) and intracardially perfusion-

fixed with freshly prepared 4 9o paraformaldehyde in O.1 M phosphate-buffered saline

(PBS, pH 7.4). After perfusion, the lumbar spinal cord was quickly removed, post-

fixed in 4 9e paraformaldehyde for 2 hr, and permeated with 20 9o sucrose in O.1 M PBS

for 1 day and 30 9o sucrose in O.1 M PBS for 2 days with agitation. The L5 lumbar

spinal cord segments were then frozen in an embedding compound (Sakura

Finetechnical, Tokyo, Japan) on isopentane using liquid nitrogen and stored at -30 eC

until use. Frozen spinal cord segments were cut with a freezing cryostat (Leica CM

1510, Leica Microsystems AG, Wetzlar, Gerrnany) at a thickness of 10 pm and thaw-

mounted on poly-L-lysine-coated glass slides.

   The spinal cord sections were blocked in 10 9o normal goat serum (NGS) in O.Ol M

PBS for 1 hr at room temperature. The primary antibody was diluted in O.Ol M PBS

containing 10 9o NGS [1:250 glial fibri11ary acidic protein (GFAP, Chemicon

International, Inc., Temecula, CA, USA)] and incubated for 48 hr at 4 eC. The
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antibody was then rinsed and incubated with an appropriate secondary antibody-

conjugated with Alexa 546 (Molecular Probes, Inc., Eugene, OR, USA) for 2 hr at room

temperature. Since the staining intensity might vary between experiments, control

sections were included in each run of staining.

   The slides were then cover-slipped with PermaFluor Aqueous mounting medium

(ImmunonTM; ThermoShandon, Pittsburgh, PA, USA). All sections were observed with

a light microscope (Olympus BX-80; Olympus) and photographed with a digital camera

(CoolSNAP HQ; Olympus). Digitized images of superficial laminae of the spinal

dorsal horn sections were captured at a resolution of 1,316 x 1,035 pixels with camera.

Immunohistoehemistry llsing spinal cord neuron/glia cocultures

   Spinal cord neuronlglia cocultures were grown as follows; whole spinal cords were

obtained from newborn ICR mice (Tokyo Laboratory Animals Science), minced, and

treated with papain (9 units/mL, Worthington Biochemical, Lakewood, NJ) dissolved in

PBS solution containing O.02 9o L-cysteine monohydrate, O.5 9o glucose and O.02 9o

bovine serum albumin. After enzyme treatment at 37 eC for 15 min, cells were seeded

at a density of 2 x 106 cells/cm2. The cells were maintained for 7 days in DMEM

(Invitrogen, Carsbad, CA) supplemented with 10 9o precolostrum newborn calf serum,

10 UlmL penicillin and 10 ptglmL streptomycin. In order to evaluate the astrocytic

activation, the cells were treated with etorphine (10 ptM), morphine (10 ptM) or DMEM

for 3 days. The cells were then identified by immunofiuorescence using rabbit anti-

GFAP (Chemicon International, Inc.) followed by incubation with Alexa 488-
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conjugated goat anti-rabbit IgG. Stained cells were mounted on glass slides and

viewed using a Radiance 2000 laser-scanning microscope (BioRad, Richmond, CA,

USA). For each cover slip, four randomly chosen fields were measured (about 85 cells

in each field), and the density of GFAP-IR was measured with a computer-assisted

system (NIH Image). The upper and lower threshold density ranges were adjusted to

encompass and match the IR to provide an image with immunoreactive material

appearing in black pixels, and non-immunoreactive material as white pixels. The area

and density of pixels within the threshold value representing immunoreactivity were

calculated. Each experimental condition was repeated from three independent culture

preparations. The percentage of GFAP-IR was expressed as mean Å} S.E,M. The

statistical analysis was performed using Student's t-test.

Preparation of astrocyte-conditioned medium (ACM) mixture

   Purified spinal cord astrocytes were grown as follows; whole spinal cords obtained

from newborn ICR mice were minced and treated with trypsin (O.025 9o, Invitrogen,

Carlsbad, CA) dissolved in PBS solution containing O.02 9o L-cysteine monohydrate,

O.5 9o glucose and O.02 9o bovine serum albumin. After enzyme treatment at 37 eC for

15 min, cells were dispersed by gentle agitation through a pipette and plated on a flask.

One week after seeding, the flask was shaken for 12 hr at 37 eC to remove non-

astrocytic cells. The cells were seeded at a density of 1 x 105 cellslcm2. The cells

were maintained for 7 days in DMEM, supplemented with 5 9o precolostrum newborn

calf serum, 5 9o heat-inactivated (56 OC, 30 min) horse serum, 10 UlmL penicillin and
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10 ptg/mL streptomycin. For preparation for ACM, astrocytes were grown to

confluence. Cells were washed once with DMEM and then covered with an equal

volume of serum-free medium for 24 hr at 37 eC. The supernatant was collected 1 day

after changing to the serum-free medium culture and centrifuged at 1,OOO x g for 20 min.

The mixture of the collected cells and final supematant was used as astrocytes/ACM.

Statistical analysis

   The behavioral data are presented as the mean Å} S.E.M. The statistical

significance of differences between groups was assessed with one-way analysis of

variance (ANOVA) followed by the BonferronilDunn multiple comparison test.

Differences in integrated immunoreactivity to GRK 2, dynamin II, 6-arrestin 2 and p-

cPKC in the spinal cord obtained from morphine-treated mice were expressed as a

percent increase (mean Å} S.E.M.) with respect to that of saline-treated mice. The

statistical analysis was performed using Student's t-test.

22



Results

Development of tolerance to etorphine- or morphine-induced antinociception

   The development of tolerance to etorphine- or morphine-induced antinociception

was assessed using hot-plate test. Groups of mice were repeatedly injected s.c. with

etorphine (10 ptglkg), morphine (10 mglkg) or saline once a day for 7 consecutive days.

The injection of etorphine or morphine produced about 70-90 9o antinociceptive effect

on the first day. However, this antinociception was significantly decreased during

consecutive exposure to etorphine or morphine, indicating the development of tolerance

to etorphine- or morphine-induced antinociception (Fig. IA: pÅqO.05 and pÅqO.OOI vs. the

first day of etorphine group; Fig.IC: pÅqO.Ol and pÅqO.OOI vs. the first day of morphine

group).

   The functional change of p-opioid receptor in the spinal cord following repeated

treatment with etorphine or morphine was evaluated by tail-fiick test. Groups of mice

were repeatedly injected with saline, etorphine (10 ptglkg, s.c.) or morphine (10 mglkg,

s.c.) once a day for 7 consecutive days. Twenty-four hr after the last repeated injection,

groups of mice were challenged i.t. with a selective pt-opioid receptor agonist DAMGO

(1.0-10 pmollmouse). Repeated s.c. treatment with etorphine or morphine

significantly attenuated the antinociceptive effects induced by DAMGO compared to

that of saline-treated mice (Fig. IB, D: pÅqO.Ol). The ED,, value (with 95 9o

confidence range) for DAMGO-induced antinociception in saline-treated mice was

increased from 3.0 (2.0-4.0) to 7.2 (5.3-9.1) pmollmouse by repeated treatment with
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etorphine or 3.0 (2.0-4.0) to 6.2 (2.8-9.6) pmollmouse by repeated treatment

morphine, respectively.

with

Change in protein levels of membrane-bound GRK 2, dynamin II, P-arrestin 2

and p-cPKC in the whole spinal cord by repeated treatment with etorphine or

morphine

   The change in protein levels of membrane-bound GRK 2, dynamin II, 6-arrestin 2

and p-cPKC in the mouse spinal cord following repeated treatment with etorphine or

morphine is shown in Fig. 2. Western blots showed that protein levels of membrane-

bound GRK 2, dynamin II, 6-arrestin 2 and p-cPKC in the spinal cord were

significantly increased by repeated treatment with etorphine compared to those in the

saline-treated mice (Fig. 2A: GRK 2; 178.9 Å} 5.3 9o of control, dynamin II; 121.3 Å}

3.4 9o of control, P-arrestin 2; 173.4 Å} 9.2 9o of control, and p-cPKC 161.2 Å} 8.1 9o of

control, pÅqO.OOI vs. saline-treated group), In contrast, protein levels of membrane-

bound GRK 2, dynamin II, 6-arrestin 2 and p-cPKC in the spinal cord were not altered

by repeated treatment with morphine (Fig. 2B).

Change in GFAP immunoreactivity in the mouse spinal cord by repeated

treatment with etorphine or morphine

   Astrocytes in the dorsal horn of the spinal cord were stained with GFAP antibody.

These astrocytes were sparsely distributed in saline-treated mice (Fig. 3A). Repeated

treatment with morphine produced a robust increase in GFAP immunoreactiyity
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(GFAP-IR) in the L5 lumbar spinal dorsal horn of the mouse spinal cord (Fig. 3C). It

was apparent that each individual astrocyte labeled by GFAP was hypertrophied with

an enlarged cell body (Fig. 3C). In contrast, GFAP-IR was not changed by repeated

treatment with etorphine (Fig. 3B) compared to that of saline-treated mice (Fig. 3A).

Based on the data presented above, I next investigated the effect of etorphine or

morphine on astrocytes using the spinal neuronlglia cocultures. As shown in Fig. 4, in

vitro treatment with morphine (10 ptM) for 3 days caused a robust astrocytic activation

in spinal neuronlglia cocultures (Fig. 4C, D), as detected by a hypertrophy and an

increase in the level of GFAP-IR compared to that in normal medium-treated cells (Fig.

4A). In contrast to morphine, treatment with etorphine (10 ptM) for 3 days failed to

activate GFAP-positive astrocytes in spinal neuronlglia cocultures (Fig. 4B, D).

Delay of the development of tolerance to morphine-induced antinociception by

pretreatment with propentofylline

   The effect of pretreatment vvith the glial-modulating agent propentofy11ine (PPF) on

the development of tolerance to morphine- or etorphine-induced antinociception was

assessed by the hot-plate test. At first, I confirmed whether pretreatment with PPF

could affect acute morphine- or etorphine-induced antinociception. The dose-

response curves for the antinociceptive effects of either morphine or etorphine were not

affected by pretreatment with PPF (Fig. 5A, C). In saline-pretreated mice, either

morphine- or etorphine-induced antinociception was significantly decreased during

consecutive exposure to morphine or etorphine, respectively, indicating the
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development of tolerance to morphine- or etorphine-induced antinociception (Fig. 5B:

pÅqO.Ol and pÅqO.OOI vs. the first day of saline-pretreated morphine group, Fig. 5D:

pÅqO.Ol and pÅqO.OOI vs. the first day of saline-pretreated etorphine group), The

development of tolerance to morphine-induced antinociception, but not to etorphine-

induced antinociception, was significantly delayed by pretreatment with PPF (Fig. 5B:

pÅqO.Ol, Fi,2g = 10.6, PPF-pretreated morphine group vs. saline-pretreated morphine

group).

Acceleration of the development of tolerance to morphine-induced antinociception

following a single i.L injection of cultured spinal cord astrocytes with astrocyte-

conditioned medium (ACM) mixture

   The next study was undertaken to examine the role of astrocyte-released soluble

factors and astrocytes in the development of tolerance to morphine- or etorphine-

induced antinociception. The spinal astrocytes and astrocytes-conditioned medium

(astrocytes/ACM) mixture, which were obtained from cultured astrocytes of the

newborn mouse spinal cord, was injected into the spinal cord. Twenty-four hr after

i.t. injection of astrocytes/ACM mixture or DMEM, mice were repeatedly injected with

morphine or etorphine for 7 consecutive days. A single intrathecal injection of

astrocytes/ACM mixture produced a significant decrease of antinociceptive effect on

the third day, indicating the acceleration of the development of tolerance to morphine-

induced antinociception (Fig. 6B: pÅqO.05, Fi,ii = 7.93, astrocyteslACM-treated

morphine group vs. DMEM-treated morphine group). However, the development of
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tolerance to etorphine was not affected by intrathecal injection of astrocyteslACM

mixture. Under the condition, an intrathecal injection of astrocytes/ACM mixture had

no effects on the acute etorphine- or morphine-induced antinociception (Fig. 6A, C)

and basal hot-plate latency after s.c. treatment with saline (Fig. 6B, D).
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Fig. 1 Development of tolerance to etorphine- or morphine-induced antinociception assessed by hot-

plate test (A, C). Groups of mice were injected with saline, etorphine (10 ptglkg, s.c.) or morphine

(10 mg/kg, s.c.) once a day for 7 consecutive days. The antinociceptive effect induced by etorphine

or morphine on the first day significantly decreased during consecutive exposure to etorphine or
morphine. (Fig. IA: "pÅqO.05 and """pÅqO.OOI vs. the first day of etorphine group; Fig.IC: *"pÅqO.Ol

and ***pÅqO.OOI vs. the first day of morphine group). Effect of repeated administration of etorphine

or morphine on spinal antinociception produced by i.t. injection of a selective pt-opioid receptor

agonist DAMGO assessed by tail-flick test (B, D). Twenty-four hr after the last repeated injection

of saline, etorphine or morphine, the mice were treated with DAMGO (1.0-10 pmolfmouse, i.t.).
The dose-response curves for the antinociceptive effects produced by i.t. injection of DmuGO in
mice treated repeatedly with saline (square, EDso: 3.0 pmollmouse, i.L), etorphine (triangle, EDso: 7.2

pmollmouse, i.t.) and morphine (circle, EDs,: 6.2 pmollmouse, i.t.) were shown. The data represent
the mean with S.E.M. Each group used 6- 1 2 mice.
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Fig. 2 Change in protein levels of membrane-bound GRK 2, dynamin-II, -arrestin 2 and p-cPKC in
the whole spinal cord by repeated treatment with etorphine (A) or morphine (B). Groups of mice
were injected with saline, etorphine (10 yglkg, s.c.) or morphine (10 mglkg, s.c.) once a day for 7

consecutive days. The membranous fractions were prepared at 24 hr after the last injection.
Upper: Representative Western blots of GRK 2, -arrestin 2, dynamin-II and p-cPKC. Lovver:
Changes in the immunoreactivities for GRK 2, -arrestin 2, dynamin-Il and p-cPKC in membranous
fraction of whole spinal cords obtained from saline-, etorphine- or morphine-treated mice. Each
column represents the mean with S.E.M. of 3 independent samples. *** p Åq O.OOI vs. saline-treated
mice.
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Fig. 3 Chan.ge• in 6FAP-IR in the L5 lumbar spinal dorsal horn ot" the mouse spinal cord by repeated

injection ot' ctorphitie or morphinc. Mice were repeatedlÅr, injected with saline. etorphinc or
niorphine once a daÅr' t'or 7 consecutii-'e c/[ays. TNvent}/'-t'our hr after repeated treatnient. the satnples

xvere prepared. In mice treated repeatedly Nvith morphine (C). (he level of GFAP-IR ",as increased

with niorpholo.gical differentiation as conipared to that in saline-treatcd mice (A). In etorphine-

treated mice (B), GFAP-IR was not chan.ged as compared to that in saline-treated rnice (A). Three
independent sainples Nvere peit'ornied in this study, Scale bars. 50 Fun (A. B. C). 10 yni (inset).
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antinociceptive effects of morphine or etorphine (A, C) and the development of tolerance to
morphine- or etorphine-induced antinociception (B, D). (A, C) Groups of mice were pretreated with
saline or PPF (5.0 mglkg, i.p.) 30 min before an injection of morphine (1.0-10 mglkg, s.c., A) or

etorphine (1.0-10 glkg, s.c., C). (B, D) Groups of mice were injected with saline, morphine (10
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Fig. 6 Effect of a single i.t. injection of cultured spinal cord astrocytes with astrocyte-conditioned

medium (astrocytes/ACM) mixture on the dose-response curves for the antinociceptive effects of
morphine or etorphine (A, C) and the development of tolerance to morphine- or etorphine-induced

antinociception (B, D). (A, C) Groups of mice were pretreated i.t. with DMEM or astrocyteslACM
24 hr before an injection of morphine (1.0-10 mglkg, s.c., A) or etorphine (1.0-10 ptglkg, s.c., C).

(B, D) Groups of mice were injected with saline, morphine (10 mglkg, s.c.) or etorphine (10 pglkg,

s.c.) once a day for 7 consecutive days. DMEM or astrocyteslACM mixture was administered 24 hr
before first drug treatment. The data represent the mean with S.E.M. Each group used 6-15 mice.
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Discussion

   Following the binding of the agonist to pt-opioid receptors, the receptor signals via

activation of heterotrimeric G proteins of the Gi/o family. With continued exposure to

agonist, pt-opioid receptors are rapidly phosphorylated by GRK, and this

phosphorylation stimulates the binding of arTestins to the receptor. The pt-opioid

receptor/arrestin complex is then recruited to a constitutive pathway that utilized

clathrin-coated pits to endocytose a wide variety of cell surface proteins in a dynamin-

dependent manner 25-27). In the present study, repeated injection of etorphine and

morphine produced a significant inhibition of the spinal antinociceptive effect produced

by DAMGO, indicating the pt-opioid receptor desensitization in the spinal cord. Here,

I demonstrated that repeated in vivo treatment with etorphine, but not morphine, caused

a significant increase in all protein levels of GRK 2, dynamin II and 6-arrestin 2 in

membranes of the mouse spinal cord compared to those in saline-treated mice. In

support of the role of these trafficking proteins in pt-opioid receptor regulation, chronic

in vivo treatment with the opioid antagonist induces up-regulation of pt-opioid receptors

associated with a reduction in GRK 2 and dynamin II 69). Furthermore, it has been

reported that chronic treatment with etorphine produces a significant increase in protein

levels of dynamin II, but not GRK 2 6"62'7e). The down-regulation of immunoreactive

pt-opioid receptor assessed by Western blots and the decrease of 3[H]DAMGO binding

in the spinal cord are observed following continuous s.c. infusion of etorphine 'O).

Although there are some of differences between these reports and current data, the
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discrepancy seems to be caused by the differences of etorphine dosing protocol andlor

sample preparation protocol. Taken together, these findings strongly suggest that the

etorphine-induced p-opioid receptor desensitization may result from the GRK

21dynamin IV6-arrestin 2-dependent phosphorylation of v-opioid receptors.

   Many GPCRs are phosphorylated by PKC. Like other GPCRs, pt-opioid receptor

contains PKC phosphorylation sites on the third intracellular loop and the carboxyl

terminus 'i'72), which are important for the desensitization. Here I demonstrated that

mice tolerant to etorphine exhibited a significant increase in activities of membrane-

bound cPKC in the spinal cord. Several studies have pointed out that PKC can modify

the functional state of GRKs and arrestin providing a novel level of cross-talk in signal

transduction '3"5). In addition, it has been reported that functional pt-opioid receptors

can be protected from degradation by phosphorylation and subsequently pt-opioid

receptor-mediated antinociception is enhanced in PKCy-deficient mice '6). These

results indicate that PKC in the spinal cord is implicated in the development of spinal

antinociceptive tolerance to p-opioid receptor agonists in mice. Consistent with these

findings, the increase in the membranous PKC activity due to repeated treatment with

etorphine may be associated with the phosphorylation of pt-opioid receptor and several

trafficking-associated protejns.

   Like etorphine, repeated in vivo treatment with morphine produced a significant

attenuation of the DAMGO-induced antinociception. However, this treatment showed

no change in protein levels of membranous fraction of GRK 2, dynamin II, 6-arrestin 2

and p-cPKC in the spinal cord, which is consistent with previous reports 6`'62). These
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findings suggest that the desensitization of pt-opioid receptors following repeated

morphine treatment may not be associated with the functional changed in the receptor

trafficking proteins.

   Recent morphological inspection that astrocytes enwrap synaptic terminals indicates

that astrocytes can influence neuronal activity and synaptic function by secreted

neuromodulators 63). In contrast, activated neurons can also promote the differentiation

of astrocytes, implying the existence of the functional interaction between neurons and

astrocyte'7). Here I found that the level of GFAP in the mouse spinal cord was clearly

increased by chronic in vivo and in vitro treatment with morphine, whereas this

phenomenon was not observed by chronic etorphine treatment. Furthermore,

pretreatment with the glial-modulating agent, PPF, suppressed the development of the

antinociceptive tolerance to morphine. In addition, a single i.t. injection of

astrocyteslACM mixture significantly enhanced the development of tolerance to

morphine-induced antinociception. Interestingly, these agents failed to affect the

development of tolerance induced by etorphine. Consistent with the present data,

Raghavendra et al. 67) and Tawfik et al. '8) demonstrated that repeated treatment with

morphine increases the glial activation and enhances proinflammatory cytokine levels,

including interleukin-16 (IL-16), IL-6 and tumor necrosis factor ct (TNF ct), associated

with the expression of morphine tolerance. In addition, Shavit et al. 79) have shown

that the antinociceptive response induced by morphine can be curtailed by

proinflammatory cytokine production due to chronic morphine treatment, which leads to

a shift in the nociceptive equilibrium toward pain rather than analgesia. Taken
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together, these findings support the idea that activated astrocytes following chronic

morphine treatment may release several cytokines. These released cytokines may alter

the nociceptive threshold. Thus, this phenomenon could explain the mechanism of the

suppression of morphine-induced antinociception following chronic morphine treatment,

which is called analgesic tolerance to morphine.

   Several lines of evidence suggest that spinal cord glial cells create exaggerated pain

state '8-8'). Activated glial cells have been known to release a variety of neuroactive

substances, including arachidonic acid, prostaglandins, excitatory amino acids and nerve

growth factors to increase the excitatory synaptic transmission 78-8i). Although the

molecular mechanism underlying the present phenomenon, which only morphine affects

GFAP, is still unclear, one possibility is that lower efficacy drugs, like morphine, engage

another pathways on account of differences in several respects (e.g., receptor selectivity

and kinetics).

   In conclusion, the present data provide direct evidence for the distinct mechanisms

between etorphine and morphine on the development of tolerance to antinociception.

These findings raise the possibility that the increased astroglia response due to chronic

morphine treatment may result in the morphine-specific receptor modulating profile,

which could be related to the down-regulation of p-opioid receptor function without

receptor internalization and may actively participate in the development of morphine

tolerance and the induction of neuronal plasticity.
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Chapter 2

Neuronal protein kinase Cy-dependent proliferation and hypertrophy

of spinal cord astrocytes following repeated in vivo administration of

morphine
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                               Introduction

   In the central nervous system, astrocytes form an intimately connected network with

neurons and their processes often closely enwrap synapses. The critical role of these

cells in metabolic and trophic support to neurons, ion buffering and clearance of

neurotransmitters is well established `3). Recent accumulating evidence suggests that

astrocytes are active partners of neurons in additional and more complex functions.

Astrocytes express a repertoire of neurotransmitter receptors mirroring that of

neighboring synapses "-`6). Such receptors are stimulated during synaptic activity and

start calcium signaling into the astrocyte network. Recent evidence indicates that

intracellular waves of calcium in astrocytes represent the start of backsignaling to

neurons, as they trigger release of chemical transmitter (i.e. glutamate, IL, interferon

and chemokines) `7'`8). In Chapter 1, I stated that repeated treatment with morphine

increases the astrocytic activation in the dorsal horn of the spinal cord, which is related

to the development of tolerance to morphine-induced antinociception.

   Protein kinase C (PKC) is an integral part of the cell signaling machinery 28-so).

Biochemical and molecular cloning analysis have revealed that PKC comprises a 1arge

family with multiple isoforms exhibiting individual characteristics and distinct pattems

of tissue distribution 3i'32), It has been demonstrated that PKC inhibitors attenuate the

development of tolerance to morphine-induced antinociception 82). Furthermore,

chronic in vivo treatment with a selective pt-opioid receptor agonist [D-Ala2,N-Me-

Phe`,Gly5-ol]enkephalin (DAMGO) results in the increase of the membrane-bound
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PKC y isoform in the spinal cord of mice 82). These findings indicate that activated

PKC is involved in the development of opioid tolerance. However, none or little is

known about the direct communication between PKC and astroglial response under the

condition with repeated in vivo administration of morphine. Therefore, the present

study was undertaken to investigate the role of neuronal PKCy in the activation of spinal

astrocytes by repeated in vivo treatment with morphine using the transgenic mice with

GFAP promoter-controlled enhanced green fluorescent protein (EGFP) expression and

PKCy knockout mice.
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Materials and Methods

Animals

   The PKCy knockout mice (The Jackson Laboratory, Bar Harbor, ME, USA), which

were C57BL/6j and 129Sv mixed genetic backgrounds as described previously 8), their

wild-type mice, transgenic mice which express EGFP under the control of the mouse

GFAP promoter (GFAPIEGFP transgenic mice) 8`'85), and male ICR mice (Tokyo

Laboratory Animals Science Co., Ltd, Tokyo, Japan) were used in the present study.

Animals were housed in a room maintained at 23 Å} 1 eC with an alternating 12 hr light-

dark cycle. Food and water were available ad libitum during the experimental period.

Immunohistochemistry

   Mice were repeatedly injected with morphine (10 mglkg, s.c.) or saline (10 mL/kg,

s.c.) once a day for 7 days. The procedure for the sample preparation was performed

following the method described in Chapter 1.

   The spinal cord sections were blocked in 10 9o normal horse serum (NHS) in O.O1 M

PBS for 1 hr at room temperature. Each primary antibody was diluted in O.Ol M PBS

containing 10 9o NHS [1:500 PKCy (Santa Cruz Biotechnology, Inc., Santa Cruz), 1:500

microtubule associated protein 2alb (MAP2alb, Chemicon International, Inc., Temecula,

CA, USA), 1:500 neuronal nuclei (NeuN, Chemicon International, Inc.) and 1:100

GFAP (Chemicon International, Inc.)] and was incubated for 48 hr at 4 OC. The

antibodies were then rinsed and incubated with each secondary antibodies conjugated
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Alexa 488 and Alexa 546 for 2 hr at room temperature. Since the staming intensity

might vary between experiments, control sections were included in each run of staining.

   The slides were then cover-slipped with PermaFluor Aqueous mounting medium

(Immunon'M; ThermoShandon, Pittsburgh, PA, USA). Fluorescence ofboth EGFP and

the immunolabelings was detected using the light microscope (Olympus AX-70;

Olympus, Tokyo, Japan) and photographed with a digital camera (Polaroid

PDMCII/OL; Olympus). The density of PKCy labeling was measured with a

computer-assisted imaging analysis system (NIH Image). The upper and lower

threshold density ranges were adjusted to encompass and match the immunoreactivity

(IR) to provide an image with immunoreactive material appearing in black pixels, and

non-immunoreactive material as white pixels. A standardized rectangle was positioned

over the superficial laminae of dorsal hom of the spinal cord area from morphine-

treated mice. The area and density ofpixels within the threshold value representing IR

were calculated and the integrated density was the product of the area and density. The

same box was then `dragged' to the corresponding position on the superficial laminae of

dorsal horn of the spinal cord area from saline-treated mice and the integrated density of

pixels within the same threshold was calculated again.

Statistical analysis

All data are expressed as mean Å} S.E.M. Differences in integrated immunoreactive

density on the dorsal horn in the spinal cord of morphine-treated mice vs. that of saline-

treated mice was tested with Student's t-test.
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Results

Increase in the immnoreactivity for neuronal specific y isoform of PKC (PKCy-IR)

by repeated treatment with morphine in the superficial dorsal horn of the spinal

cord of ICR mice

   Repeated s.c. treatment with morphine once a day for 7 consecutive days produced a

time-dependent inhibition of the morphine-induced antinociceptive action (data not

shown). Twenty-four hr after the last injection, the immnoreactivity for PKCy (PKCy-

IR) in the spinal cord was observed by immunohistochemical analysis. The PKCy-IR

was highly restricted in the inner part of laminae II (laminae IIi) in the dorsal horn of

saline-treated ICR mice (Fig. IA). Using semi-quantitative analysis, repeated s.c.

treatment with morphine produced a significant increase in the level of PKCy-IR in the

dorsal horn of the spinal cord (129.1 Å} 1.0 9o of control, pÅq O.OOI vs. saline-treated ICR

mice, Fig. IB, C). It should be noted that the increased PKCy-IR was extended to the

outer part of laminae II (laminae IIo) as well as laminae IIi. Furthermore, the increased

PKCy-IR was highly co-localized with both the neuron-specific nuclear protein marker

NeuN (Fig. ID) and the dendritic protein marker MAP2a/b (Fig. IE) in the superficial

layer of the dorsal horn.

Change in GFAP-IR in the dorsal horn of the spinal cord of ICR mice by repeated

treatment with morphine

   In ICR mice treated chronically with morphine, the level of GFAP-IR was elevated
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mostly in gray matter and partly in white matter of the dorsal horn of the spinal cord (Fig.

2B-i), without changing in the ventral horn of the spinal cord (Fig. 2C, D). It was

apparent that each individual astrocyte labeled by GFAP was hypertrophied with an

enlarged cell body (Fig. 2B-ii). In contrast, the level of GFAP-IR in the dorsal horn of

the spinal cord was not affected by a single injection of morphine (Fig. 2F, G).

No apparent co-localization of PKCy-IR with GFAP-IR in the dorsal horn of the

spinal cord of ICR mice by repeated treatment with morphine

   Double-labeling experiments showed that the increased PKCy-IR was expressed in

non-glial cells in the dorsal horn of the spinal cord of morphine-treated ICR mice, as

shown by no apparent co-localization with GFAP-IR (Fig. 2E), The hypertrophied

GFAP-IR by repeated morphine treatment was adjacent to the increased PKCy-IR.

Implication of morphological change in astrocytes by repeated treatment with

morphine in GFAP/EGFP transgenic mice

   The change in GFAP by repeated treatment with morphine using GFAPIEGFP

transgenic mice is shown in Fig. 3. In these mice, astrocytes were discemed by their

green fluorescence caused by GFAP promote-driven EGFP expression. The pale and

fibriform EGFP-expressing cells were found in the superficial layer of saline-treated

transgenic mice (Fig. 3A-i, A-ii). In morphine-treated transgenic mice, the

extensively bright and branched EGFP-expressing cells were observed mostly in gray

matter (Fig.3B-i) and partly in white matter (Fig. 3B-ii) in the dorsal horn of the spinal
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cord. In order to chemically identify the branched EGFP-expressing cells as reactive

astrocytes, immunofluorescent studies using specific antibody to GFAP were

performed. Almost all of the EGFP-expressing cells were found to express GFAP

(Fig. 3C-i, C-ii).

Implication of activated PKC isoform in astroglial proliferation and hypertrophy

in the superficial layers of the spinal cord foHowing repeated treatment with

morphine

   In the wild-type mice, PKC -IR was dramatically increased by repeated s.c.

treatment with morphine (Fig. 4B , 127.4 Å} 2.0 9o of control, pÅqO.OOI vs. wild-type mice

treated with saline, Fig. 4A). In saline- and morphine-treated mice lacking PKC gene,

PKC -IR was abolished in the dorsal horn of the spinal cord (Fig. 4C, D). In wild-type

mice treated repeatedly with morphine, the level of GFAP-IR was markedly increased

and each individual astrocyte labeled by GFAP was hypertrophied in the laminae I and

laminae II of the spinal cord (Fig. 4F), as compared to that found in wild-type mice

treated with saline (Fig. 4E). In PKC knockout mice treated repeatedly with morphine,

the level of GFAP-IR was not changed (Fig. 4H), as compared to that observed in PKC

knockout mice treated with saline (Fig. 4G).
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Fig. 1 (A. B) Increase in the level of PKC -IR in the superficial layers of ICR mouse spinal cord after

repeated treatment with morphine. Mice were repeatedly injected with saline (A) or morphine (10
m.glkg. s.c.: B) once a day for 7 consecutive days. Twenty-four hr after the Iast treatment. mice were

perfused with saline fo11owed by freshly prepared 49c parafomialdehyde in phosphate-but"fered saline

(pH 7.4). (C) Semi-quantitative analysis of PKC -•IR in the superficial layerg of the spinal cord
from mice treated repeatedly with morphine was performed by NIH ima..e.e ('iCXi-'S" p Åq O.OOI vs. saline-

treated mice). Each column represents the mean with S.E.M. of three independent samples. (D. E)
The increased PKC -IR (.areen) in the superficial layers of the spinal cord of morphine-treated mice

wat co-localized with NeuN (red: D) and MAP2a!b (red: E). Scale bars: (A. B) = 50 sim, (D. E) =
25 um.
  ,
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Fig. 2 (A. B) GFAP-IR in the dorsa] horn of the spinal cord of ICR mice was dramatically increased

with morpholog.ic d' ifferentiation by repeated morphine treatment (B-i. B-ii: high magnification) as

compared to saline treatment (A). without chanLgin,Q. in the ventral horn of the spinal cord (C: saline.

D: morphine). (E) The red labeled for PKC and the green labeled for GFAP are no apparent co-
localization in the superficial layers of the spinal cord of morphine-treated mice. (E G) GFAP-IR in

the dorsal horn of the spinal cord of ICR mice was not changed by a single injection of morphine.

The spinal cord slices were prepared at 30 min after s.c, injection of (F) saline or (G) morphine.

Three independent samples were performed in this study. Scale bars:(A. B-i. C. D. F. G) = 50 stm.

(B-ii) = 10 ym. (E) = 25 Ftm.
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Fig. 3 (A. B) The extens.'ively bright and branched EGFP-expre.s,sin.y celis xvere ()bserved in b. orh .gra.y

Tnatter (B-i) and white inatter (B-ii) in the dorsal horn ot' the spinal cord in niorphine-treated

EGFPfGFAP-trans.genic mice as compared to sa]ine-treated mice (,AL-i: .graÅr matter. ,AL-ii: white

matter). Mice were repeatedjy injected xvith niorphine(]O nitJlkg.r.c.}once a da.y t'or 7 consecurive

days. Twenty-four hr after the lttst treatinent. the samples were prepured. (C) The enhanced EGFP
(g,reen) in the superficial layers of the spinal corcl of niorphinL'i--treatcd ]nice x•iv'as co-localized xvith

GFAP-IR(recl). Two indepenclcnt samples were performed in this study, Scale bars:(A. B)= 50
stm. (C-i. Cii} = 25 L,{m.
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Fig. 4 Implication of a' ctivated PKC isoform in astro.glial proliferation ac nd hypertrophy in the supertlcial layers

of the spinal cord t-ollowing chronic in i'ii'o treatment svith morphine. Mice Nvere repeatedl.v injected with

morphine (10 mglkg.. s.c.) once a da}' t'or 7 consecutive da}'s. Tsventy-four hr afrer the last treatment. the

samples Nvere prepared {A) The PKC -IR was hiL-ohly rcstricted in the inner part of laminae II (IIi) in the dorsal

hom of saline-treated Nvild-type mice. Repeated s.c. treatment Nvith morphine prc)duced a s. ignificant increase in

the level of PKC -IR in the dorsal horn (B) as compared to saline-treated mice (A). It should be noted that the

increased PKC -IR was extended to the outer part of laminae II (IIo) as svell as laminae IIi. In saline- {C) and

morphine-treated (D) PKC knockout mice. PKC -IR is completelÅr' absent in the dorsal hom of the spinal cord.

In Nvild-type mice treated repeatedly with morphine (F}. the level of GFAP-IR was dramatically increased with

morpholo,a.ical dift'erentiation as compared to saline-treated wild-type mice ÅqE). In mot-phine-treated PKC

knockout mice (H). GFAP-IR svas not changed as compared to saline-treated PKC knockout mice {G), Three

independent samples "'ere performed in this study. Sca]e bart : )'O p{m.
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Discussion

   The neuron-specific distribution of PKC g.eems to be the most unique characteristics

of this isotype. Abundant expression of PKC in the hippocampal pyramidal cells and

cerebellar Purkinje cells has implicated it in the modulation of synaptic plasticity,

including long term potentiation (LTP) and long term depression (LTD) 83'86). PKC is

also abundant in the dorsal horn of the spinal cord and has been suggested to be

important for the sensory signal processing including pain, and the interaction with the

opioidergic system. 39-`i87). Previously, it has been demonstrated that the activation of

pt-opioid receptors in the spinal cord induces prolonged PKC translocation 88) and that

the inhibition of PKC prevents the development of antinociceptive tolerance to pt-opioid

receptor agonists 82). Furthermore, in PKC deficient mice, functional pt-opioid

receptors can be protected from degradation by phosphorylation and subsequently pt-

opioid receptor-mediated antinociception is enhanced 83). In the present study, I found

that repeated in vivo treatment wjth morphine produced a significant increase in neuron-

specific PKC -IR with its expanding distribution in the dorsal horn of the spinal cord.

These results indicate that the activation of PKC may be critical for the expression of

morphine-induced antinociceptive tolerance.

   The synaptic astrocytes have been shown to integrate synaptic transmission by

responding to the signaling molecules through the extracellular space "`"`6). In the

present study, repeated treatment with morphine induced astroglial proliferation as

characterized by the increase in GFAP-IR levels, and astroglial hypertrophy as detected
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by a stellate morphology of GFAP-IR in the dorsal horn of the spinal cord,

Furthermore, the present molecular approach using GFAP/EGFP transgenic mice

provides direct evidence for the increase in astroglial proliferation following repeated in

vivo treatment with morphine in the dorsal horn of the spinal cord. Collectively, these

findings strongly support the idea that mice tolerant to morphine exhibit the production

of reactive astrocytes in the dorsal horn of the spinal cord.

   The key approach for the present study was to investigate the influence of the PKCy

gene deletion in the astroglial response following repeated in vivo treatment with

morphine in the dorsal horn of the mouse spinal cord. The almost complete failure to

induce the astroglial proliferation and hypertrophy following repeated treatment with

morphine was observed by PKCy gene deletion. Although the exact mechanism is

unclear at this time, a hypothesis would be advanced that the release of transmitters

including glutamate and adenosine 5'-triphosphate (ATP), neuromodulators such as

brain-derived neurotrophic factor (BDNF) and prostaglandins (PGs), and other signaling

molecules from neurons through the activation of neuronal PKCy following repeated

administration of morphine may be responsible for the activation of spinal astrocytes.

   In conclusion, the present data indicate that repeated in vivo treatment with morphine

induces astroglial hypertrophy and proliferation associated with activating neuronal

PKCy in the mouse spinal cord. These findings suggest that PKCy isoform is likely to

be one of the most important factors to modulate the communication between neurons

and glial cells. Such findings raise the fascinating possibility that the increased

astroglial response is involved in the development of opioid tolerance and the induction
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of neuronal plasticity associated with the sustained activation of neuronal PKCy isoform.
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Chapter 3

Involvement of spinal metabotropic glutamate receptor 5 in the

development of tolerance to morphine-induced antinociception
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Introduction

   Glutamate is the major excitatory neurotransmitter in the mammalian CNS, the

actions of which are regulated by ionotropic glutamate receptors (iGluRs) and

metabotropic glutamate receptors (mGluRs) `9'50). mGluRs have been identified and

classified into three groups according to their sequence homology, signal transduction

pathways and pharmacological selectivity: group I (mGluRl and mGluR5), group II

(mGluR2 and mGluR3) and group III (mGluR4, mGluR6, mGluR7 and mGluR8). Of

these mGluRs, group I mGluRs are predominately located postsynaptic neurons where

they couple to G, proteins to activate phospholipase C (PLC). PLC catalyzes the

production of diacylglycerol (DAG), which activates protein kinase C (PKC), and

inositol (1,4,5)-triphosphate (IP,), which activates IP, receptor to release of Ca2' from

intracellular stores 5i'53).

   In the spinal cord, glutamate mediates the transmission of sensory information.

Recent behavioral and electrophysiological evidences have shown that administration of

selective mGluRl and mGluR5 agonists enhances behavioral responses to noxious

stimulation and induces activity in dorsal horn neurons 89po). Expression of mGluR5 is

predominantly found in the soma and dendrites of superficial dorsal horn neurons and

sparsely found in the astrocytes 9"93). Recent observations have revealed that glial

mGluRs can be involved in the interaction between glial cells and neurons in

physiological as well as pathological conditions 9`•95).

   The administration of morphine into the spinal cord produces a powerful
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antinociception. It is well known that prolonged exposure to morphine results in

tolerance to morphine-induced antinociception. Furthermore, as described in Chapter

2, I found that repeated in vivo treatment with morphine produced a significant increase

in neuronal PKC in the dorsal horn of the mouse spinal cord. It has been documented

that systemic and brain injections of mGluR5 antagonists significantly attenuate the

development of tolerance to morphine-induced antinociception 96'97). However, the

specific contribution of mGluR5 in the spinal cord to the suppression of tolerance to

morphine-induced antinociceotion remains unclear. The aim of the present chapter

was then to investigate whether the spinal mGluR5 could contribute to the development

of tolerance to morphine-induced antinociception in mice.
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Materials and Methods

Animals

   Male ICR mice weighing about 25 g (Tokyo Laboratory Animals Science Co., Ltd.,

Tokyo, Japan) at the beginning of the experiments were used in the present study.

Animals were housed in a room maintained at 23 Å} 1 eC with an alternating 12 hr light-

dark cycle. Food and water were available ad libitum during the experimental period.

Drugs

   Morphine hydrochloride (Sankyo, Tokyo, Japan) and methyl-6-(phenylethynyl)-

pyridine hydrochloride (MPEP, Sigma-Aldrich, MO, USA) were dissolved in O.9 9o

sterile. 3,5-Dihydroxyphenylglycine (DHPG) was purchased from Tocris (MO, USA).

lntrathecal injection procedure

   Intrathecal (i.t.) injection was performed following the method described in Chapter

L

Assessment of antinociception

   The morphine-induced antinociceptive response was evaluated by recording the

latency to paw licking or tapping in the hot-plate test (55 Å} O.5 eC, Muromachi Kikai

Co., LTD., Tokyo). To prevent tissue damage, we established a 30 sec cut-off time.

The test was performed 30 min after morphine treatment. Each animal served as its
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own control, and the latency to response was measured both before and after drug

administration. To investigate the development of antinociceptive tolerance following

repeated treatment with morphine, mice were repeatedly injected with morphine (10

mglkg, s.c.) or saline (10 ml/kg, s.c.) once a day for 7 consecutive days. In the

combination study, MPEP (10 mglkg, s.c. or 1 nmoVmouse, i.t.) was administered 30

min before s.c. treatment with morphine. Antinociception was calculated as percentage

of the maximum possible effect (9o MPE) according to the following formula; 9o MPE =

(test latency - pre-drug latency)/ (cut-off time - pre-drug latency) x 100.

Antinociceptive response represents as the mean 9o MPE Å} SEM.

Western blotting

   The procedure for Westem blotting was performed following the method described

in Chapter 1.

   The membrane was incubated with primary antibody diluted in TBS [1:50,OOO

mGluR5 (Upstate, VA, USA)] containing 5 9o nonfat dried milk overnight at 4 OC.

immunohistochemistry

   Immunohistochemistry was performed following the method described in Chapter 2.

   Mice were repeatedly injected with morphine (10 or 20 mglkg, s.c.) or saline once a

day for 7 days. The primary antibodies were diluted in O.Ol M PBS containing 10 9o

NGS [1:3000 mGluR5 (Upstate), 1:320 microtubule associated protein 2afb (MAP2a/b,

Chemicon International, Inc.), 1:500 neuronal nuclei (NeuN, Chemicon International,
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Inc.) and 1:400 GFAP (Chemicon International, Inc.), 1:800 SIO06 (Sigma-Aldrich)]

and incubated for 48 hr at 4 eC. Fluorescence immunolabeling was observed with a

light microscope (Olympus BX-80; Olympus) and photographed with a digital camera

(CoolSNAP HQ; Olympus) or a confocal microscope (Radiance 2000, Bio-Rad

Laboratories, CA, USA). The density of mGluR5 labeling was measured with a

computer-assisted imaging analysis system (NIH Image) described in Chapter 2.

In vitro receptor binding assay

   For the membrane preparation, the spinal cords of mice were quickly removed 24 hr

after repeated morphine (10 mglkg, s.c.) injection and rapidly transferred to a tube filled

with ice-cold buffer. The membrane homogenate was prepared as described previously

98). Briefly, the dissected tissue was homogenized in ice-cold buffer containing 50 mM

Tris-HCI (pH 7.4), 5 mM MgCl, and 1 mM EGTA. The homogenate was centrifuged

at 1,OOO x g for 10 min at 4 eC and the supernatant was ultracentrifuged at 48,OOO x g for

20 min at 4 eC. The pellet was suspended in ice-cold assay buffer containing 50 mM

HEPES (pH 7.4) and 2 mM MgCl, followed by centrifugation at 48,OOO x g for 20 min

at 4 eC. The resultant pellet was resuspended in ice-cold assay buffer and stored at -80

ec until used.

   Saturation binding experiments were performed in triplicate with increasing

concentrations of [3H]MPEP (O.2-100 nM). The binding assay was carried out by

incubation for 2 hr, and non-specific binding was determined in the presence of 10 ptM

MPEP. The binding was terminated by rapid filtration through glass fiber filters
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(Unifilter-96 GF/C plate; ParkinElmer Life Sciences, MA, USA) presoaked with O.3 9o

polyethyleneimine using a 96-well plate cell harvester. Filters were washed three times

with ice-cold assay buffer. After the addition of scintillant, the radioactivity was

determined by liquid scintillation spectrometry (TopCount; Packerd Instruments, CT,

USA). Protein concentrations were measured by Bicinchoninate (BCA) Compatible

protein Assay kit (Pierce, Rockford, IL USA) using bovine serum albumin as the

standard. The binding curves were fitted using the GraphPad prism 4.0 program

(Graphpad Software, CA, USA).

Confocal Ca2' imaging

   The procedure for the tissue processing was performed according to the method

described in Chapter 2. 0n day 8, the cells were treated with morphine (10 ptM) and

MPEP (10 ptM) for 3 days.

   Cells were loaded with 10 ptM fluo-3 acetoxymethyl ester (Dojindo Molecular

Technologies, Inc., MD, USA) for 90 min at room temperature. After a further 20-30

min of de-esterification with the acetoxymethyl ester, the coverslips were mounted on a

microscope equipped with a confocal Ca2' imaging system (Radiance 2000, BioRad

Laboratories). Fluo-3 was excited with the 488 nm line of an argon-ion laser and the

emitted fiuorescence was collected at wavelengths År 515 nm, and average baseline

fluorescence (Fo) of each cell was calculated. To compensate for the uneven

distribution of fluo-3, self•-ratios were calculated (Ratio: Rs = FIFo).

   Cultured spinal neurons were perfused with DHPG (10-100 ptM) for 30 sec at 5
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mLlmin at room temperature in cultured spinal cord neurons followed by the

superfusion of balanced salt saline (BSS, pH 7.4) containing 150 mh NaCl, 5.0 mM

KCI, 1.8 mM CaCl,, 1.2 mM MgCl,, 25 mM N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid and 10 mM D-glucose,

Statistical analysis

   The data are presented as the mean Å} SEM. The statistical significance of

differences between the groups was assessed with Student's t-test or one-way ANOVA

followed by Bonferroni/Dunnett test.
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Results

Suppression of the development of tolerance to morphine-induced antinociception

by pretreatment with MPEP

   The effect of pretreatment s.c. and i.t. with the selective mGluR5 antagonist MPEP

on the development of tolerance to morphine-induced antinociception is shown in Fig.1.

In both s.c. and i.t. saline-pretreated mice, the s.c. injection of morphine produced about

70 9o antinociceptive effect on the first day. However, the antinociception was

significantly decreased during consecutive exposure to morphine and was clearly

reduced over 7 days, indicating the development of tolerance to morphine-induced

antinociception (pÅqO.Ol and pÅqO.OOI vs. the first day of saline-pretreated morphine

group, Fig. IA, B). The development of tolerance to morphine-induced

antinociception was significantly suppressed by both s.c. and i.t. pre-injection with

MPEP (Fig. IA: s.c. MPEP-pretreated morphine group vs. s.c. saline-pretreated

morphine group, Fi,is = 6.67, pÅqO.05; Fig. IB: i.t. MPEP-pretreated morphine group vs.

i.t. saline-pretreated morphine group, Fi,is = 16.23, pÅqO.Ol).

Increase in mGluR5 density performed by [3H]MPEP binding to the mouse spinal

cord membrane preparations obtained from mice repeatedly treated with

morphine

   I next examined the change in density of mGluR5 by monitoring the binding of

[3H]MPEP to membranes of the mouse spinal cord following repeated treatment with
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morphine. Figures 2A and 2B show the saturation curves and Scatchard plots of

[3H]MPEP binding in spinal cord membranes from morphine- and saline-treated mice.

The B.. value of [3H]MPEP in the membrane preparation from the spinal cord was

significantly increased in morphine-treated mice as compared to saline-treated mice

(pÅqO.05). There was no significant different in the K, values for [3H]MPEP between

saline-treated and morphine-treated mice (Fig. 2B).

Increase in levels of mGluR5 by repeated treatment with morphine in the

superficial dorsal horn of the mouse spinal cord

   The change in protein levels of membrane-bound mGluR5 following repeated

treatment with morphine in the mouse spinal cord detected by Western blotting is shown

in Fig. 3. The spinal cord membrane was prepared at 24 hr after the last injection of

saline and morphine. Repeated s.c. treatment with morphine produced a significant

increase in protein levels of mGluR5 in membranes of the mouse spinal cord as

compared to that found in saline-treated mice (159.9 Å} 4.5 9o of increase, pÅqO.OOI vs.

saline-treated mice, Fig. 3).

   Twenty-four hr after the last repeated injection of morphine, the IR for mGluR5 in

the spinal cord was observed by immunohistochemical analysis. In saline-treated mice,

mGluR5-IR was strongly distributed in lamina I and II, progressively decreasing density

in lamina III, IV and V (Fig. 4A). Furthermore, mGluR5-IR was found in the network

of lateral spinal nucleus (LSN) neurites, located in the dorsolateral funiculus. The

most intense mGluR5-IR appeared to be concentrated in inner part of lamina II (lamina
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IIi). In high-magnification image of the heavily immunoreactive lamina IIi, it was

apparent that the neuropil contained granular immunolabelings were observed

surrounding neuronal somata (Fig. 4B). Using semi-quantitative analysis, repeated s.c.

treatment with morphine produced a significant increase in the level of mGluR5-IR in

the dorsal horn of the spinal cord in a dose-dependent manner (10 mglkg: 168.9 Å}

10.6 9o of control; 20 mglkg: 192.9 Å} 1.8 9o of control, pÅq O.OOI vs. saline-treated mice,

Fig. 4C, D, E, F). It should be mentioned that the increased mGluR5-IR by morphine

was extended to the outer part of laminae II and laminae I as well as laminae IIi.

Furthermore, double-labeling experiments showed that the neuron-specific nuclear

protein marker NeuN-IR (red) in the dorsal horn of the spinal cord was surrounded by

mGluR5-IR (green, Fig. 5A, B). In addition, mGluR5-IR (green) was apparent

colocalization with the dendritic protein marker MAP2afo-IR (red) in the spinal cord of

morphine-treated mice (Fig. 5D). In mice treated chronically with morphine, GFAP-

IR (red) in the dorsal horn of the mouse spinal cord was increased with morphologic

differentiation (Fig. 6A), which was sparsely co-localized with mGluR5-IR (green, Fig.

6B). In order to further investigate whether mGluR5 could be expressed on the

reactive astrocytes more clearly, mGluR5-IR was analyzed at high magnification by

using the optical-sectioning capabilities of confocal microscopy. As a result, the

increased mGluR5-IR by morphine was hardly any co-localization with either GFAP-IR

(Fig. 6C-i, C-ii) or the marker of the cell body for astrocytes, S100B-blR (Fig. 6C-iii).
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Enhancement of DHPG-evoked increase in the intracellular Ca2' concentration

([Ca2']i) in morphine-treated spinal cord neuron/glia cocultures

   I next investigated the change in neuronal activity evaluated by monitoring the

[Ca2']i evoked by DHPG in rnorphine-treated neuron/glia cocultures. DHPG (10-100

ptM) produced a transient increase in the [Ca2']i in cultured spinal cord neurons (Fig. 7).

The Ca2' responses induced by DHPG in neurons were dose-dependently enhanced by 3

days of treatment with morphine (10 pM: pÅq O.Ol vs. control cells, 100 ptM: pÅq O.OOI

vs. control cells, Fig. 7). These effects were blocked by 3 days of treatment with

MPEP (10 pM).
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Fig. 1 Effect of pretreatment with MPEP on the development of tolerance to morphine-induced
antinociception. Mice were repeatedly injected with morphine (10 mgtkg, s.c.) or saline once a day

for 7 consecutive days. MPEP (A: 10 mglkg, s.c., B: 1 nmoVmouse, i.t.) was administered 30 min
before every morphine treatment. Each point represents 9o antinociception at 30 min after saline or

morphine injection. In both s.c. and i.t. saline-pretreated mice, the antinociception induced by

morphine was significantly decreased during consecutive exposure to morphine (**pÅqO.Ol and
"** pÅqO.oo1 vs. the first day of saline-pretreated morphine group, "pÅqO.05 and ""pÅqO.Ol vs. the first

day of MPEP-pretreated morphine group, Fig. IA and IB). The development of tolerance to
morphine-induced antinociception was significantly inhibited by both s.c. and i.t. injection with

MPEP (Fig. IA: s.c. MPEP-pretreated morphine group vs. s.c. saline-pretreated morphine group, Fi,is

= 6.67, pÅqO.05; Fig. IB: i.t. MPEP-pretreated morphine group vs. i.t. saline-pretreated morphine

group,Fi,is=16.23,pÅqO.Ol). Eachgroupused10-12mice.

65



(A)

A3.E
.v

e
noe 2
E

År
eE
va

e
g

ca

  o
o

Chronic salinc trcatinent

Chronie morpl}ine trea"ncnt

25 se 75

l3H)MPEP concentration (nM)

100

(B)

e.e3s

e.o3e

o.e2s

   e.o2e
Etli

ca O.OI5

e.oie

e.eos

o.ooe
   o.e

   IStnaN Kd
(pmeVeug prttk'in) tnM}

Chrotlit' salitie

Chrunic morphine

O.5 1.e l.5
  Bound (pmollmg proteln)

l Å} 2.g5

ll.3

2.0

Fig. 2 Saturation curves (A) and Scatchard plots (B) for the specific binding of [3H]MPEP to spinal

cord membranes from chronic saline- and morphine-treated mice. Groups of mice were treated with
morphine (10 mglkg, s.c.) and saline once a day for 7 consecutive days. Twenty-four hour after the
last injection, the membrane fractions were prepared. [3H]MPEP binding assay was carried out in a

range from O.2 to 100 nM. The specific binding was defined as the difference in binding observed
in the absence and presence of 10 pM unlabeled MPEP. The data represent the mean Å} S.E.M. from
three separate experiments performed in triplicate. *PÅqO.05 vs. chronic saline-treated mice.

66



135 kDa

112 kDa

    200

- 150
2

i :l

 oe loo
 o

E}DsÅq

     50

       o

- ritiin• e

Saline Morphine

mGluR5
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treatment. Upper: Representative Western blot of mGluR5. Lon'er: Changes in immunoreactivity
for the mGluR5 in membranes of spinal cords obtained from saiine- or morphine-treated mice.
Mice were repeatedly injected with saline or morphine (10 mgfkg. s.c.) once a day for 7 consecutive

days. The membrane fraction was prepared at 24 hr after the last injection. Each colurnn
represents the mean Å} S.E.M. of 3 independent samples. *** p Åq O.oo I vs. saiine-treated mice.
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Fig. 4 (,AL) Distribution of mGluR5-IR in the mouse spinal cord. mGluR5.-IR was distributed in
inner part of lamina II {IIi) and in the lateral s. pinal nucleus (LSN: arrow). (B) High magnification

of the heavily immunoreactive lamina II, The neuropil contained La.ranular-like mGluR5-IR
(arrowhead) and many neuronal somata (astaris.k). (C. D. E) Increase in levels of mGluR5-IR in
the dorsal horn of the spinal cord fo]lowinLg repeated treatment with morphine in a dose-dependent

manner. (F) Semi-quantitative analy: is of mGluR5-IR was performed using NIH image (10 mg!kg:
168,9 Å} 10.6 `Y(• of control "**pÅq 0.001 vs, saline-treated mice: 20 mglkg: 192.9 Å} 1.8 O/o of control

*** pÅq O,OOI vs. .galine-treated micet, Each column representt the mean Å} S.E.M. of three
independent samplef. Scale bars.:50 s(m,
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Fig. s' Localization of the increased mGluR5-IR in the dorsa] horn of the spinal cord followin.o
repeated treatment with morphine, (A. B} NeuN-IR (red) in the dursal horn ot' tlie s'pinal cord was

turroLLnded bÅr' mGluR5-IR (,green). {C. D) The increa,sed mGluR5-IR (.green) wa.s more apparent
coloealization "'ith ,N/I,AtP2a!b-IR (red} in the spinal cord ot' m(')rphine-treated mice. as coTnpared to

saline-treated niice. Scale bars: )-O un].
                                     L

69



Fig. 6 Localization of the increased mGluR5-IR in the dorsal horn of the g, pinal cord followin.g

repeated treatment xvith morphine. GFAP-IR (red) in the dorsal horn of the mouse spinal cord was
increased xvith morpholo.gic differentiation after repeated morphine treatment (B). which was sparsely

co-localized with the increased mGluR5-IR (.green). High-magnification image of the superficial
larninae of the dorsal horn analyzed by cont'ocal microscope. The red labeled for GFAP and the
.-oreen labeled for mGluR5 (C-i. C-ii) or the .oreen labeled for S100 and the red labeled for mGluR5

(C-iii) are no apparent co-localization in the superficial layers of the spinal cord of morphine-treated

mice. Scale bars: (A. B) = 50 pm. (C) = 10 stm.
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Fig. 7 Changes in Ca2' response to DHPG in the spinal cord neuron following repeated treatment
with morphine. (A) Traces show the DHPG (10 geM)-evoked increase in the intracellular Ca2'

concentration in control and morphine (10 ptM)-treated spinal cord neurons. (B) The response of
Ca2' to DHPG in control and morphine-treated spinal cord neurons are summarized. The response
of Ca2' to DHPG (10-1oo ptM) in spinal cord neurons was dose-dependently enhanced by 3 days
treatment with morphine (10 pM: **pÅq O.Ol vs. control cells, 1oo pM: ***pÅq O.oo1 vs. control cells).

These effects were blocked by 3 days of treatment with MPEP (10 ptM). Data represent the mean Å}

S.E.M. of 35--40 cells from 3 separate observations.
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                                Discussion

   The key finding in the present study was that repeated in vivo treatment with

morphine produced a dose-dependent increase in mGluR5-IR in the superficial dorsal

horn of the spinal cord. Double-immunofluorescence analysis revealed that the

increased mGluR5 was predominantly localized in the neuropil and the surface of neural

membrane of laminae I-III neurons following repeated treatment with morphine.

Furthermore, I found using receptor binding assay that mice tolerant to morphine

exhibited a marked increase in the B..,, value of [3H]MPEP, a selective radioligand for

mGluR5, without changing in the Kd value in the spinal cord, Although it has been

reported that s.c. or i.c.v. administration of the selective mGluR5 antagonist MPEP

prevents the development of the antinociceptive tolerance to morphine 96'97), I found here

for the first time that i.t. pretreatment with MPEP significantly inhibited the

development of tolerance to morphine-induced antinociception.

   Activation of mGluR5 results in PLC-catalyzed PI hydrolysis, which leads to the

release ofCa2' from intracellular sources and stimulation of PKC 99). Previously, it has

been reported that PKC inhibitors attenuated the development of tolerance to

morphine's actions 83). In addition, repeated in vivo treatment with morphine produced

a significant increase in neuron-specific PKCy-IR located in the laminae IIi with its

expanding distribution in the dorsal horn of the spinal cord described in Chapter 2.

Taken together, these findings support the idea that the increased number of membrane-

bound mGluR5 following repeated treatment with morphine may lead to a long-lasting
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activation of neuronal PKC in the dorsal horn of the spinal cord, which is responsible

for the development of tolerance to morphine-induced antinociception.

   Considering the increase in mGluR5 by repeated morphine treatment, one wonder

whether this increase is due to the increased expression of functional receptors located

on the membrane. Thus, I next investigated whether the function of mGluR5 in

cultured spinal cord neurons could be enhanced following chronic treatment with

morphine as evaluated by monitoring the intracellular Ca2' concentration induced by the

group I mGluR agonist DHPG. In the present study, the increased intracellular Ca2'

concentration induced by DHPG in cultured spinal cord neurons was potently enhanced

by chronic in vitro exposure to morphine. This effect was blocked by treatment with

MPEP. It is, therefore, likely that chronic treatment with morphine leads to the

functional up-regulation of group I mGluR including mGluR5, which may result in the

enhancement of neuronal activity and synaptic transmission in the spinal cord.

   In Chapters 1 and 2, I stated that mice tolerant to morphine exhibited astroglial

hypertrophy and proliferation associated with activating neuronal PKC in the dorsal

horn of the spinal cord. In support of these findings, it has been reported that

quantitative change in levels of GFAP can be observed in the rat spinal cord after

chronic administration of morphine 66'67). Accumulating evidences indicate that

activation of glial mGluR5 leads to the release of glutamate through a SNARE-

dependent exocytotic mechanism to modulate neuronal excitability and synaptic

functions ioo'iOi). In the present study, the increased IR for mGluR5 was expressed in

nonglial cells in the dorsal horn of the spinal cord of morphine-treated mice, as shown
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by no apparent co-localization with either GFAP-IR or SIOOB-IR. These findings

suggest that the increased mGluR5 located in the spinal cord neuron is implicated in the

development of tolerance to morphine-induced antinociception,

   Here I found that repeated treatment with morphine produced a dose-dependent

increase in mGluR5-IR with its expanding distribution in the dorsal horn of the spinal

cord. Although the data suggest that the increased expression of neuronal mGluR5

following repeated treatment with morphine may be responsible for the development of

tolerance to morphine-induced antinociception, the molecular mechanisms underlying

this phenomenon is unclear. It has been documented that most mGluR5-IR is observed

in the dendritic shafts, spike-like structures and cell body of the postsynaptic regions 9').

One speculation related to the present results is that repeated stimulation of pt-opioid

receptor promotes the new protein synthesis of mGluR5 or suppresses the protein

degradation of mGluR5 associated with receptor internalization to increase the

excitatory synaptic transmission in opposition to excessive activation of inhibitory

neurons in the dorsal horn. It should be noted in our preliminary data that MPEP-

treated mice failed to exhibit the increased level of mGluR5 in the spinal dorsal horn

following repeated morphine treatment (data not shown), Furthermore, mice tolerant

to morphine exhibited the significant increase in protein levels of the vesicular

glutamate transporter 1 and the synaptic vesicle-specific small G protein Rab3A, but

not vesicular glutamate transporter 2 and vesicular GABA transporter. In addition, we

found that high K'-induced glutamate release in spinal neuronlglia co-cultures was

1argely increased following chronic morphine treatment compared with that of the
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control (data not shown). These data support the idea that repeated stimulation of pt-

opioid receptors may initially cause the long-lasting suppression of the release of

glutamate, and in turn may increase the number of functional mGluR5 associated with

the new production of mGluR5 or the suppression of the degradation of mGluR5

through its related intracellular signaling pathway to enhance the glutamate synaptic

transmission. This phenomenon would be, at least in part, responsible for the

suppression of the morphine-induced antinociception, which could be eventually called

tolerance to spinal antinociception induced by morphine.

   In conclusion, the present study indicates that repeated in vivo treatment with

morphine induces the increase in the functional mGluR5s in the mouse spinal cord,

which contributes to the development of tolerance to morphine-induced antinociception.
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General Conclusion

The above findings lead to the following conclusions:

in Chapter 1:

   Repeated s.c. treatment with etorphine, but not morphine, produced a significant

increase in protein levels of GRK 2, dynamin II, P-arrestin 2 and p-cPKC in membranes

of the mouse spinal cord, suggesting that the etorphine-induced pt-opioid receptor

desensitization may result from GRK 21dynamin IVS-arTestin2-dependent

phosphorylation of pt-opioid receptors. Unlike etorphine, morphine failed to change

the levels of these trafficking proteins. Furthermore,Ifound that the level of GFAP in

the mouse spinal cord was clearly increased by chronic in vivo and in vitro treatment

with morphine, whereas no such effect was noted by etorphine. In consistent with

these results, intrathecal pretreatment with the glial-modulating agent propentofyIline

suppressed the development of tolerance to morphine-induced antinociception. In

addition, intrathecal injection of astrocyteslACM mixture, which were obtained from

cultured astrocytes of the newborn mouse spinal cord, aggravated the development of

tolerance to morphine. In contrast, these agents failed to affect the development of

tolerance induced by etorphine. These findings provide direct evidence for the distinct

mechanisms between etorphine and morphine on the development of tolerance to spinal

antinociception. These findings raise the possibility that the increased astroglia

response due to chronic morphine treatment may result in the morphine-specific
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receptor modulating profile, which could be related to the down-regulation of pt-opioid

receptor function without receptor internalization and may actively participate in the

development of morphine tolerance and the induction of neuronal plasticity.

In Chapter 2:

   Repeated treatment with morphine caused a significant increase in PKCy-IR with

expanding distribution in the dorsal horn of the spinal cord associated with the

development of tolerance to morphine-induced antinociception. The PKCy-IR was

exclusively co-localized with neuron specific markers, NeuN and MAP2arb.

Furthermore, mice tolerant to morphine exhibited a dramatic increase of reactive

astrocytes in the dorsal horn of the spinal cord by repeated treatment with morphine, as

characterized by the increase and morphological changes in GFAP-positive cells. In

addition, the transgenic mice that express an EGFP under the control of the mouse

GFAP promoter displayed the enhanced levels of EGFP expression by repeated

treatment with morphine. Under these conditions, mice lacking the PKCy gene failed

to show any changes in astroglial hypertrophy and proliferation by repeated treatment

with morphine. These findings suggest that the sustained activation of neuronal PKCy

due to chronic treatment with morphine is implicated in the increased leyels of reactive

astrocytes in the dorsal horn of the spinal cord, which may be involved in the

development of morphine tolerance and the induction of neuronal plasticity.

In Chapter 3:
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   The development of tolerance to morphine-induced antinociception caused by

repeated treatment with morphine was suppressed by repeated i.t. or s.c. treatment with

the selective mGluR5 antagonist MPEP. Furthermore, the density and protein level of

mGluR5 in membranous fraction of the mouse spinal cord was significantly increased

by repeated treatment with morphine. In addition, repeated treatment with morphine

produced a dose-dependent increase in mGluR5-IR in the superficial dorsal horn of the

spinal cord. Double-labeling experiments showed that the increased mGluR5 was

predominantly expressed in the neurons and sparsely expressed in the processes of

astrocytes following repeated treatment with morphine. In consist with these results,

the increased intracellular Ca2' concentration induced by the selective group I mGluR

agonist, DHPG, in cultured spinal cord neurons was potently enhanced by 3 days in

vitro treatment with morphine. These findings support the idea that the increased

mGluR5 in neurons following repeated treatment with morphine leads to the enhanced

neuronal excitability and synaptic transmission in the dorsal horn of the spinal cord, and

in turn suppresses the morphine-induced antinociception in mice.

Working hypothesis

   In the dorsal horn of the spinal cord, presynaptic sensory neurons receive and

transmit nociceptive information in the periphery to the spinal cord. Postsynaptic

second-order neuron receives and transmits nociceptive information to the brain.

Synaptic astrocytes surround neurons and maintain the environment. Here, I describe

my hypothesis concerning the change in spinal function following chronic morphine
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treatment (See Fig. A). Activation of p-opioid receptors located on presynaptic

sensory neurons induces the inhibition of glutamate release. In the morphine-tolerant

state, repeated stimulation of pt-opioid receptors causes the prolonged suppression of the

release of glutamate, which results in an increase in the number of mGluR5 in

postsynaptic second-order neurons. Consequently, the mGluR5-dependent increase in

the intracellular Ca2' concentration and the activation of PKCy can be potentially

enhanced. The release of transmitters including glutamate, ATP and other signaling

molecules from neurons through the activation of PKCy induces astroglial proliferation

and hypertrophy. The activated astrocytes release a variety of neuroactive substances,

which may result in a shift in the balance of excitatory input and alter the nociceptive

threshold. This phenomenon could explain the mechanism of the suppression of

morphine-induced antinociception following chronic morphine treatment, which is

called analgesic tolerance to morphine.
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