ジヒドロベンゾフラン骨格の構造特性を利用した

生理活性物質の合成研究

2004

深津考司

目 次

理論の部

		頁
第1章 新		1
第1節	研究概要	1
第2節	脳血管障害と頭部外傷	4
第3節	抗酸化剤とドーパミン抑制薬	6
第4節	脳血管障害急性期/頭部外傷治療薬の研究方針	8
第5節	従来の睡眠障害治療薬とメラトニン	10
第6節	メラトニン受容体作動薬	13
第7節	睡眠障害治療薬の研究方針	14
第2章 打	1酸化作用を有するジヒドロベンゾフラン誘導体の合成	16
第1節	5-ベンゾフランアミン誘導体の合成	16
第2節	光学活性体の合成	24
第3節	結論	28
第3章 打	1酸化作用と中枢神経障害改善作用	29
第1節	薬効評価試験	29
第2節	抗酸化作用	30
第3節	ドーパミン遊離抑制作用	37
第4節	脳血管障害急性期/頭部外傷モデル動物に対する作用	4 0
第5節	結論	44
第4章 メラトニン受容体作動作用を有する		
	ジヒドロベンゾフラン誘導体の合成	45
第1節	二環性ベンゾシクロアルケン誘導体の合成	4 5
第2節	インデノフランおよびその類縁体の合成	48
第3節	光学活性体の合成	52
第4節	結論	56

第5章 メ	ラトニン受容体作動作用ならびに in vivo 薬理作用	5 7
第1節	薬効評価試験	5 7
第2節	二環性化合物のメラトニン受容体作動作用	58
第3節	三環性化合物のメラトニン受容体作動作用	63
第4節	睡眠誘発作用	69
第5節	ジアゼパムとの併用に関する検討	7 1
第6節	結論	73
第6章 結語		74

謝辞

実験の部

第2章第1節に関する実験	77
第2章第2節に関する実験	98
第3章第2節に関する実験	103
第3章第3節に関する実験	104
第3章第4節に関する実験	104
第4章第1節に関する実験	105
第4章第2節に関する実験	116
第4章第3節に関する実験	126
第5章第2節に関する実験	131
第5章第3節に関する実験	1 3 2
第5章第4節に関する実験	1 3 3
第5章第5節に関する実験	133
引用文献および注	134

発表論文一覧

1 4 3

76

理論の部

第1章 緒言

第1節 研究概要

著者は 2,3-ジヒドロベンゾフラン(以下、ジヒドロベンゾフラン)骨格の構造特性に着目 し、ジヒドロベンゾフラン構造を有する生理活性物質の合成研究を行った。初めにジヒドロ ベンゾフラン骨格の電子的特性である強力なラジカル安定化作用を利用して、脳血管障害急 性期および頭部外傷に対する治療薬を目的とした抗酸化剤の合成を行った。次に、ジヒドロ ベンゾフラン骨格のリジッドな立体的特性を立体配座制限モデルとして利用して、睡眠障害 治療薬を目的としたメラトニン受容体作動薬の創製を行った。

脳血管障害急性期の際には、当初受けた脳血管の閉塞に伴う脳虚血による神経細胞の脱落 に加えて、虚血一再灌流後に引き起こされる化学反応連鎖により、さらに多くの神経細胞が 破壊されることが明らかとなってきた。¹⁾ このような遅発性の細胞死に関与する物質として、 NMDA 受容体を活性化するグルタメート²⁾、細胞の興奮ならびに酵素の活性化に関与する カルシウム³⁾ およびナトリウムイオン⁴⁾、二価の鉄イオンを触媒として酸素、アラキドン酸 カスケードなどから生成する活性酸素種⁵⁾、神経毒の前駆体であるドーパミン⁶⁾ などが報告 されている。また上述したメカニズムは脳血管障害急性期のみならず、外傷性の脳損傷にも 共通のものと考えられており⁷⁾、現在多くの犠牲者を出している交通事故による頭部外傷を 考え併せると、その治療薬開発の重要性は非常に高いと言える。

ビタミン E(α-トコフェロール)の基本骨格である 3,4-ジヒドロ-2H-ベンゾピラン(以下、 クロマン)環と構造が類似しているジヒドロベンゾフラン環は、1位の酸素原子のp軌道と ベンゼン環の π電子軌道との角度が 0 に近い、すなわち酸素原子の孤立電子対がベンゼン 環の π電子と共役していることにより、クロマン環よりも強い抗酸化作用を発現すること が報告されている。⁸⁾著者はこのジヒドロベンゾフラン環の電子的特性に着目し、脳血管障 害急性期ならびに頭部外傷に対する治療薬の創製を目的として、二次障害因子である活性酸 素種を消去しドーパミンを抑制するジヒドロベンゾフラン誘導体に関する研究を行った。

種々の方法を用いて合成した化合物の中で、ジヒドロベンゾフラン環の2位に不斉中心を 有する光学活性体の合成法として、キラルなマンデル酸を分割剤に用いる高効率な光学分割 法、キラルオキシラン誘導体を合成素子とする立体選択的な合成法を開発した。これらジヒ ドロベンゾフラン誘導体の合成についての詳細は第2章で述べる。

脳血管障害急性期/頭部外傷治療薬の創製を目的として合成した化合物について、初めに ラット肝臓ミクロソームホモジネートを用いた過酸化脂質生成抑制作用を調べた。また、塩 化第一鉄を脊髄くも膜下腔内に投与することにより惹起される神経症状に対する化合物の抑 制作用を調べるマウス一塩化第一鉄—it 法を、新たに中枢性抗酸化作用の評価系として開発 して、化合物の作用を調べた。次に、この2つの評価系で優れた抗酸化作用を示した化合物 について、マウスにメタンフェタミンを投与することにより惹起されるドーパミン遊離に対 する抑制作用を評価した。さらに、強力なドーパミン遊離抑制作用を示した光学活性体 (S)-24n (Figure 1)を用いて、その対掌体と共に脳血管障害急性期、頭部外傷の病態モデルでの 作用を検討した。その結果、(S)-24n がドーパミン遊離抑制作用の弱い対掌体よりも病態モ デル動物の死亡率、機能障害などをより低い用量で改善したことから、上記疾患の増悪因子 として活性酸素種に加えてドーパミンも重要な役割を果たしていることが明らかとなった。 生物活性評価についての詳細は第3章で述べる。

睡眠障害は症状の特徴、病因などに基づいて約 90 種類に分類されているが⁹、現在その 治療薬として用いられている睡眠薬のほとんどはベンゾジアゼピン系睡眠薬である。しかし ながら、バルビツール酸系睡眠薬と比較して安全性が高いと言われているベンゾジアゼピン 系睡眠薬においても、時に反跳性不眠¹⁰、覚醒後のふらつき¹¹、眠気などの副作用が認め られる場合がある。また、用量によっては記憶障害を引き起こすことが指摘されていること から¹²⁾、高齢者の不眠、睡眠リズム障害などに対してベンゾジアゼピン系睡眠薬を使用し にくいという問題点が指摘されている。

著者は、松果体から生成する生体内ホルモンであるメラトニンに着目した。メラトニンは 概日リズムを刻んで生成していることから¹³⁾、動物の概日リズム調整に関与していると考 えられている。¹⁴⁾ また睡眠誘発作用についても報告されていることから¹⁵⁾、メラトニンは自 然に近い睡眠の導入に重要な役割を果たしていると考えられている。メラトニン受容体のサ ブタイプの中では MT₁ 受容体が脳内の発現も高く、概日リズムの調節に主に関与している と考えられる。¹⁶⁾ また、*MT₃* 受容体の機能は明らかとなっていないことから、MT₁ 受容体に 対して高い選択性および親和性を有する睡眠障害治療薬の合成研究に着手した。

メラトニンの 5 位メトキシ基は MT₁ 受容体の His195 と相互作用することが報告されている。¹⁷⁾ 活性発現に重要な酸素原子の孤立電子対を His195 との相互作用に有利な配座に固定す

るために、ジヒドロベンゾフラン骨格のリジッドな立体的特性の利用を計画した。また、メ ラトニンの側鎖アミド基は、MT₁ 受容体の Ser 残基などと相互作用することが示唆されてい る。¹⁷⁾ メラトニンよりも適したアミド基の空間配置を探索するために、1 位の立体配置を自 由にコントロールできるインダン、テトラリンなどの二環性ベンゾシクロアルケン誘導体を 用いて検討を行い、その結果を基にリジッドなジヒドロベンゾフラン環を導入した三環性化 合物を合成することを計画した。

合成した化合物の中でベンゾシクロアルケン環の1位にS配置の不斉炭素を有する化合物 は、exo オレフィン体 61a の Ru(OAc)₂[(S)-binap] を触媒に用いた不斉水素化反応により効率 的に得られることが明らかとなった。また exo オレフィン体 61a は、Raney-cobalt を触媒に 用いた α,β-不飽和ニトリル 56 の選択的 1,2-還元を鍵反応として合成した。ベンゾシクロア ルケン誘導体の合成についての詳細は第4章で述べる。

合成した二環性ベンゾシクロアルケン誘導体の中では、インダン誘導体が最も高い MT₁ 親和性を示した。また、1 位の立体が S 配置である化合物が MT₁ 受容体に対する高い親和 性および選択性を有することが明らかとなった。一方、メラトニンと同様に endo 型の二重 結合を有する化合物は S 体と同等の MT₁ 親和性を示したが、メラトニンと同様に MT₃ 受容 体に対しても比較的高い親和性を有していた。インダン環 6 位メトキシ基の好ましい立体配 座を検討する目的で 5-メチル体および 7-メチル体の MT₁ 親和性を調べたところ、7-メチル 体の活性は大きく減弱した。さらに、5-メチル体の立体配座をジヒドロベンゾフラン環を導 入して固定したインデノ[5,4-b]フラン誘導体に高い MT₁ 親和性が認められ、本誘導体の中 から (S)-90b (Figure 1) を精査化合物として選出した。

化合物 (S)-90b は、MT₁ 受容体においてフォルスコリンによる cAMP 産生亢進を抑制し、 ネコに対してメラトニンよりも低用量で持続的な睡眠誘発作用を示した。また、本化合物は メラトニンなどの *MT*₃ 受容体に親和性を有する化合物とは異なりジアゼパムにより誘発さ れるマウス協調運動障害を増悪しなかったことから、ベンゾジアゼピン系睡眠薬と併用され た場合でも安全性は高いことが示唆された。薬理作用の詳細は第5章で述べる。

Figure 1. Promising compounds (S)-24n and (S)-90b.

第2節 脳血管障害と頭部外傷

脳血管障害は、その死亡者数は近年減少傾向にあるとは言え、癌、心疾患と共に依然わが 国の3大死因の一角を占めている。また一命を取りとめた場合でも運動障害、知覚障害、記 憶障害などの後遺症に本人のみならず家族も悩まされ、精神的、経済的ならびに社会的負担 は非常に大きい。問題となっている脳血管障害の大部分は脳卒中などの局所的な脳機能障害 による急性期の疾患であるが、脳卒中はさらに虚血性脳血管障害(脳梗塞)と、脳出血、く も膜下出血などの出血性脳血管障害に分類される。

虚血性脳血管障害を発症した場合、虚血そのものを取り除き虚血病巣の拡大を防止するために、線溶系薬剤、血小板凝集阻害剤などを用いる血栓溶解療法により血流の再開通(再灌流)を図ることが一次的な治療法である。しかしながら近年、再灌流後の遅発性神経細胞死による二次的な病的過程の進行が明らかとなってきている。¹⁾すなわち、虚血に対する脳組織の回復に関しては、血流障害そのものからの回復の可否のみならず、脆弱性の高い脳神経細胞の二次的な障害を防ぐことも重要な要因である。

二次的な脳機能障害を引き起こすメディエータとしては、活性酸素種、モノアミン類、興 奮性アミノ酸、アラキドン酸代謝物、神経ペプチドならびにカルシウム、ナトリウムなどの イオン類などが実験的事実に基づいて提唱されており (Figure 2)¹⁸⁾、これらのメディエータ を抑制する薬剤の開発研究が積極的に展開されている。しかしながら最近の知見では、単一 のメディエータを抑制するだけでは治療効果は必ずしも十分ではなく、2 つ以上の作用を併 せ持つ薬剤の開発、あるいは多剤併用などのカクテル療法の確立が望まれている。加えて、 脳の温度を 32–34 °C に保つことにより活性酸素種の生成などに起因する二次障害を抑制す る脳低温療法の疾患モデル動物での有効性が示され¹⁹⁾、現在わが国でも臨床で利用されて いる。今後適切な薬剤の選択ならびに処置を行うことにより、虚血性脳血管障害における therapeutic window (回復が見込まれる時間帯)の拡大が期待されている。

出血性脳血管障害あるいは頭部外傷においても、脳出血あるいは外力により直接的に惹起 される頭蓋内出血、脳挫傷などの一次障害に加えて二次的な神経細胞の脱落が起こり、後遺 症として重篤な神経・精神症状を呈する場合がある。これらの疾患においても、前述したメ ディエータの阻害剤が病態モデル動物で有効とされている。²⁰⁾

著者は、二次障害因子として提唱されている様々なメディエータの中で、活性酸素種なら びにモノアミンの一種であるドーパミンに着目した。 通常の生理的な状態では、活性酸素種の生成は生体防御機構として必須である。その際、 過剰に生成した活性酸素種は種々の生体内抗酸化剤で消去される。しかしながら虚血中に蓄 積した還元型物質、たとえばミトコンドリア呼吸鎖から生成するコエンザイム Q₁₀ セミキノ ンラジカルなどが、一気に回復した酸素供給により酸化される再灌流の状態では、活性酸素 種の発生系が消去系を上回り過剰な活性酸素種が生成する。生成した活性酸素種はさらに細 胞膜リン脂質を連鎖的に攻撃して細胞膜の脱落を惹起し、神経細胞を死に至らしめる。

ドーパミンの二次的な障害への関与については、ドーパミンが脳虚血、頭部外傷の際に神 経終末から遊離され、そしてこのドーパミンを枯渇させておくと二次的な神経細胞死が抑制 されることが報告されている。²¹⁾ またドーパミンの酸化によりスーパーオキシドアニオンが 生成し²²⁾、ドーパミンとヒドロキシルラジカルとの反応で神経毒である 6-ヒドロキシドー パミンが生成することが示されている。²³⁾

以上のように、活性酸素種ならびにドーパミンは二次的な細胞膜の損傷、さらには神経細 胞死を引き起こす増悪物質であることから、著者は活性酸素種を消去すると共に、ドーパミ ン由来の毒性を抑制する作用を併有する脳血管障害ならびに頭部外傷治療薬の開発研究を計 画した。

Figure 2. Scheme of interrelationships between primary events and secondary injury factors in neurotrauma, as suggested by experimental data. Faden, A. I. et. al. *Trends Pharamacol. Sci.* 1992, 29–35.

第3節 抗酸化剤とドーパミン抑制薬

生体内には様々な活性酸素種消去機構があり、酸化的ストレスから生体を防御しているこ とは第2節で述べた。活性酸素種消去機構としては、スーパーオキシドアニオンの不均化反 応を触媒しこれを消去するスーパーオキシドディスムターゼ (SOD)、活性中心に三価の鉄 イオンを含み過酸化水素を水と酸素に分解するするカタラーゼ、セレンを補欠分子族とし過 酸化水素、脂肪酸ヒドロペルオキシドなど広範な活性酸素種を消去するグルタチオンペルオ キシダーゼなどの抗酸化性酵素、ならびにレチノール(ビタミン A)、アスコルビン酸(ビ タミン C)、α-トコフェロール(ビタミン E)などの抗酸化性ビタミンに加えて β-カロチ ンなどのカロテノイド類などが知られている (Figure 3)。²⁴⁾

脳血管障害あるいは頭部外傷以外にも様々な疾患の発現に活性酸素種の関与が明らかにされたことから、合成抗酸化剤の報告は多い。

三菱化学(現 三菱ウェルファーマ)は脳梗塞急性期を対象にして、抗酸化性ピラゾロン 誘導体である edaravone (Radicut[®])を 2001 年に日本国内で上市した。²⁵⁾ Upjohn(現 Farmacia 社)は含窒素複素環の抗酸化作用に着目して、くも膜下出血を対象疾患として tirilazad mesylate (Freedox[®])をオーストリア、デンマークなどで上市している。²⁶⁾また第一製薬はグ ルタチオンペルオキシダーゼ活性を有する化合物として、セレンを含む低分子化合物である ebselenを開発している。²⁷⁾大塚製薬はランダムスクリーニングで見いだした化合物に構造 修飾を加えることで得られたフェノール誘導体 OPC-14117を脳血管障害、頭部外傷に加え てパーキンソン病治療薬、向知能薬として開発している。²⁸⁾

α-トコフェロールの抗酸化作用に着目してクロマン環あるいはジヒドロベンゾフラン環を 基本骨格とした化合物は数多く見られる。Upjohn 社(現 Farmacia 社)は tirilazad mesylateの 側鎖部分をクロマン環に導入した U-78517F²⁹⁾を、また Marion Merrell Dow 社(現 Aventis 社)はジヒドロベンゾフラン環の3位に塩基性官能基を導入した MDL-74180³⁰⁾を虚血性脳 血管障害ならびに頭部外傷治療薬として開発している。さらに、千寿製薬はリン酸をリン カーとして α -トコフェロールとアスコルビン酸の2つの抗酸化性ビタミンを結合させた EPC-K1の脳虚血保護作用について報告している。³¹⁾

ドーパミン抑制薬は、ドーパミン受容体拮抗薬を中心に開発され、OPC-14597³²⁾、U-101387³³⁾ など分子内に環状アミン構造を有する化合物が多く認められる。

Figure 3. Representative antioxidants and dopamine inhibitiors.

第4節 脳血管障害急性期/頭部外傷治療薬の研究方針

α-トコフェロールなどのフェノール性抗酸化剤の活性酸素種消去能(活性酸素種との反応 性)を決定する要因は、活性酸素種に一電子およびプロトンを与えた後に生成するフェノキ シルラジカルの共鳴安定性である。すなわち、生成したフェノキシルラジカルの共鳴安定性 が大きいほど抗酸化剤の活性酸素種との反応速度が大きくなり、より強力な抗酸化作用を示 すと考えられている。

Ingold らは立体電子論を用いて、α-トコフェロールの基本骨格であるクロマン環とその類 縁体であるジヒドロベンゾフラン環の活性酸素種消去能を論じている (Figure 4、Table 1)。⁸⁾ クロマン誘導体と活性酸素種との反応で生じたクロマノキシルラジカルでは、パラ位酸素原 子の孤立電子対からの電子がベンゼン環の π電子を通じてクロマン環 1 位の酸素原子に流 れ込むことにより、電子が非局在化し、ラジカルは安定化される。鎖状エーテル誘導体 A の場合、ベンゼン環上のメチル基と酸素原子上のメチル基との立体反発により孤立電子対と ラジカルの電子軌道は約 90°の「ずれ」を生じているが、クロマン誘導体 B の場合は 17° と比較的大きな重なりを示している (Table 1)。さらに、ジヒドロベンゾフラン誘導体 C の

Figure 4. Stabilization of the phenoxyl radical via overlap of the *p*-type lone pairs of the oxygen atom in the heterocyclic ring. Ingold, K. U. et. al. J. Am. Chem. Soc. 1985, 107, 7053-7065.

場合は 6° とほとんど重なっているため電子がスムーズに流れ込み、ラジカルがより安定化 され、強力な抗酸化作用を発現すると考えられている。実際、ラジカル開始剤である AIBN を用いたスチレンの酸化に対する阻害作用(反応速度、k₁)は、定量的ではないものの「ず れ」の角度 θ との相関関係が認められている。以上のようにジヒドロベンゾフラン環が強 い抗酸化作用を発現することから、著者はまずジヒドロベンゾフラン環を基本骨格として選 択した。

前節で述べたように、抗酸化作用を有する種々のヒドロキシクロマンあるいはヒドロキシ ジヒドロベンゾフラン誘導体が医薬品を目的として開発されている。しかしながら一般的に、 フェノール性水酸基を有する化合物は生体内において硫酸抱合やグルクロン酸抱合などの代 謝を受けやすいことが知られている。また脳血管障害あるいは頭部外傷の患者に対する薬剤

必要となる。これらのことは、フェノール性水酸基と同様に活性酸素種に一電子とプロトンを与えることが可能で、より親水性の高いアミノ基をフェノール性水酸基に代えて導入することで改善できると考えた。また、当初合成したプロトタイプの化合物 6 (Figure 5) にドーパミン遊離抑制作用が認められたことから、5 位にアミノ基を有するジヒドロベンゾフラン誘導体を合成ターゲットとして研究を開始した。

の投与は急を要する場合が多く、治療薬は注射剤としての適用が

Figure 5. Structure of prototypal compound 6.

Table 1. Diheadral Angle (θ) and Antioxidative Activities (k_1 values) of Some Phenol Derivatives (Ingold, K. U. et. al. J. Am. Chem. Soc. **1985**, 107, 7053–7065)

	HO HO H ₃ C CH ₃ CH ₃ CH ₃	HO H ₃ CH ₃ CH ₃ CH ₃
Α	В	С
compd	θ , deg	k_1 , ×10 ⁴ M ⁻¹ s ⁻¹
methyl ether A	89	39
chroman B	17	380
dihydrobenzofuran (C 6	570

第5節 従来の睡眠障害治療薬とメラトニン

睡眠は生体機能、たとえば生体の修復機能、免疫機能、記憶・学習機能、生体リズムなど を維持するために必要であるばかりか、ストレス解消などにとっても重要な役割を果たして いる。健康で満足できる生活を送るためには、質の高い睡眠を確保することが必要である。 しかしながら米国 NIMH (National Institute of Mental Health)の統計によると、米国民の約3 分の1が睡眠障害に悩まされている。³⁴⁾また、加齢に伴い睡眠障害を発症する割合は増加す ると報告されている。³⁵⁾睡眠障害は高齢者の意欲を低下させて社会的活動を阻害し、QOL を悪化させる原因となることから、ただでさえ健康を害されやすい高齢者にとって致命的な リスクとなる場合もある。さらに、痴呆患者に認められる行動異常、せん妄、夜間徘徊など も生体リズム異常がその原因の1つと考えられている。

以前は、睡眠障害治療薬としてバルビツール酸誘導体が広く用いられていた。バルビツー ル酸系睡眠薬は塩素イオンチャネルに作用して興奮性の神経伝達を幅広く抑制することによ り睡眠作用を発現するが、身体依存や耐性が形成されやすく、重い離脱症状、さらには使用 量の増加に伴い脳幹麻痺による呼吸抑制を惹起し、延いては死に至らしめることが問題と なっていた (Figure 6)。

現在用いられている睡眠障害治療薬としては、比較的安全性の高いベンゾジアゼピン系お よびその類縁化合物が大部分を占めている。ベンゾジアゼピン系睡眠薬は、GABA_A 受容体 に結合して GABA を介する間接的な作用により細胞内への塩素イオンの流入を促進し、細 胞の興奮を起こりにくくすることで睡眠作用を発現する。すなわちベンゾジアゼピン系睡眠 薬による作用強度には限界があり、そのために高用量のベンゾジアゼピン系睡眠薬の投与で も脳幹抑制などの危険性は少なくなっている。一方解剖学的には、バルビツール酸系睡眠薬 は情動系、覚醒系、大脳皮質のすべてに作用して催眠作用を発現するのに対し、ベンゾジア ゼピン系睡眠薬は大脳辺縁系および視床下部などに作用して、覚醒系への刺激入力を抑制す ることにより催眠作用を誘発していると考えられている。

しかしながら脳波、眼球運動、筋電図、心電図、呼吸運動、酸素飽和度などを同時に記録 する睡眠ポリグラフの所見によると、ベンゾジアゼピン系睡眠薬は深睡眠である睡眠 stage 3 ならびに stage 4 を減少させ、stage 2 を増加させることが明らかとなっている。³⁰ さらに 「うとうと状態(睡眠 stage 1)」に近い急速眼球運動 (rapid eye movement) を伴う REM 睡 眠を減少させる傾向にある。また、長期間にわたり使用した後で急に中断すると一過性に不 眠が起こり(反跳性不眠)¹⁰、覚醒後もふらつき¹¹、眠気が残ることなどが問題点として指摘されている。さらには前行性健忘などの記憶障害を引き起こすことが報告されていること から¹²⁾、特に高齢者に対して使用する場合には注意が必要であり、安全で自然に近い眠り を誘発する睡眠薬の開発が望まれている。

生体内にはデルタ睡眠ペプチド、ムラニルペプチド、ウリジン、酸化型グルタチオン、プロスタグランジン D₂など数多くの睡眠促進物質が知られている。³⁷⁾ 一方、脳の松果体でセロトニンから 2 工程で生成され³⁸⁾、視床下部の視交叉上核などに局在しているメラトニン(*N*-アセチル-5-メトキシトリプタミン)は、生体内で環境光周期の情報伝達物質として概日リズムの調整を行っている^{38a)}。近年メラトニンに注目が集まり、季節性感情障害(冬季うつ病)³⁹⁾、睡眠・覚醒障害⁴⁰⁾、ジェット・時差症候群⁴¹⁾などの概日リズム障害に対して有効とする報告に加えて、癌⁴²⁾などの治療薬として有効であることを示唆する報告が増加しつつある。メラトニンの生合成は夜間に増加し昼間は減少するという概日リズムを刻みながら推移しているが、興味あることにメラトニンの産生量は加齢と共に減少し、特にアルツハイマー病患者では、夜間の産生量が昼間の産生量をも下回る程低下していることが明らかとなっている。^{38b)}このことは、老人性の不眠症や夜間徘徊などを伴う痴呆患者の睡眠リズム障害とメラトニンが少なからず関係していることを示唆している。現在、メラトニンは健康

Figure 6. 各世代の睡眠薬における投与量と効果・副作用との関係(科学朝日 1995 年 7 月号)

食品として米国などで入手可能であるが、長期投与における安全性は確認されていないこと から、その毒性、副作用などが懸念されている。加えて、生体内において持続性が短いこと などがメラトニンの問題点として挙げられる。⁴³⁾

ヒトメラトニン受容体は、現在までに MT_1 、 MT_2 および MT_3 の 3 つのサブタイプが報告 され、ニワトリ、アフリカツメガエルなどではさらに MEL_{1c} サブタイプの発現も認められ ている。⁴⁴⁾ MT_1 受容体はヒト視交叉上核、正中隆起ならびに下垂体前葉漏斗部に局在してお り、概日リズム調整に関与していると考えられている。¹⁶⁾ また、 MT_1 受容体と 60% の相同 性を示す MT_2 受容体は主にヒト網膜に発現していることから、環境光周期の情報伝達を通 してメラトニンの概日リズム調整に関与していることが示唆されている。⁴⁵⁾ MT_1 および MT_2 受容体はグアニンヌクレオチド結合タンパク質(G タンパク質)と共役して情報を伝達する G タンパク質共役型受容体 (GPCR) であり、細胞膜を 7 回貫通する特徴的な構造を有して いる。リガンドにより活性化されたこれらの受容体は G タンパク質を介して adenylate cyclase を不活性化し、cAMP 産生を抑制することが知られている。

一方、G タンパク質と共役していないメラトニン受容体として、*MT*₃ 受容体の存在が明ら かとなっている。本受容体は MT₁ 受容体とは異なり脳内の広い部位に発現している。また メラトニンの *MT*₃ 受容体に対する親和性は MT₁ 受容体と比較して低く、メラトニンと同様 に生体内インドール誘導体である *N*-アセチルセロトニンもメラトニンと同程度の *MT*₃ 親和 性を有することが知られている。最近になって、ハムスター由来の *MT*₃ 受容体がヒト quinone reductase 2 と相同性が高いことが報告された。⁴⁶⁾ しかしながら *MT*₃ 受容体の機能的 役割について未だ結論は出ておらず、高齢者へメラトニンを投与した際に、概日リズムに関 与していない *MT*₃ 受容体を介する作用が予期せぬ副作用に繋がる可能性があり、メラトニ ンの副作用と *MT*₁ 受容体との関わりが懸念される。

以上のことから著者は、安全で自然に近い眠りを誘発する睡眠障害治療薬の創製を目的に、 メラトニン受容体、特に脳に局在している MT₁ 受容体をターゲットとした MT₁ 選択的な作 動薬の開発研究を計画した。

第6節 メラトニン受容体作動薬

メラトニン受容体作動薬に関する研究は、メラトニン受容体のラジオリガンドとして 2-[¹²⁵I]-iodomelatonin が 1984 年に開発されてから大きく進展した。⁴⁷⁾ 当初はメラトニンと同様 にインドール骨格を有する化合物の合成が積極的に行われていたが、5 位にメトキシ基を持 たない *N*-acetyltryptamine、あるいは側鎖部分にアミド基を持たない 5-methoxytryptamine はメ ラトニンと比較して活性が大きく減弱することが明らかとなり ⁴⁸⁾、これらの構造一活性相 関から、メラトニンのメトキシ基とアミド基が受容体のアミノ酸残基と相互作用しているこ とが示唆された。一方、インドール骨格の 2 位にヨウ素原子を有する 2-iodomelatonin、フェ ニル基を有する 2-phenylmelatonin はメラトニンよりも強力な受容体親和性を示すことが報告 されている。¹⁷⁰⁾

その後 1992 年には、インドール骨格を持たないメラトニン受容体作動薬が開発された。 Servier 社からメラトニンのインドール環をナフタレン環に代えた S-20098⁴⁹)が、次いで Glaxo 社(現 GlaxoSmithKline 社)から GR-131663⁵⁰)が報告されたことを契機に非インドー ル系作動薬の開発研究が活発化し、著者が研究を開始した 1994 年以降現在に至るまで数多 くのメラトニン受容体作動薬が知られるようになった。

R=H melatonin R=I 2-iodomelatonin R=C₆H₅ 2-phenylmelatonin

N-acetyltryptamine

5-methoxytryptamine

GR-131663

Figure 7. Representative melatonin agonists before1994.

第7節 睡眠障害治療薬の研究方針

立体配座制限モデルの概念は、古くから創薬化学において広く認識されてきた。本概念の 利点は受容体、酵素に対する作用を発現する際に重要な役割を果たす官能基(ファーマコ フォアグループ)の空間配置を固定できることであり、既存の薬物と比較して活性の増強、 ターゲットに対する選択性の向上に繋がった例は数多く知られている。

メラトニンと MT₁ 受容体モデルとの docking study により、インドール環 5 位のメトキシ 基の酸素原子が MT₁ 受容体の His195 残基と相互作用していると報告されている。¹⁷⁾ 側鎖ア ミド部分のカルボニル基および窒素原子も重要なファーマコフォアであり、Ser 残基との水 素結合が示唆されている。¹⁷⁾ このように、メラトニンの活性発現に必要なファーマコフォア グループが側鎖アミド部分とアルコキシ部分であることから、著者はこれらの空間配置を変 化させ、活性発現に最適な構造を見いだすことを計画した。

第6節で述べた GR-131663 がメラトニン受容体作動活性を示すことから二環性の芳香環 は必ずしも必要ではないと考え、インドール環やナフタレン環とは異なり、側鎖付け根の立 体配置を自由にコントロールできるベンゾシクロアルケン環を基本骨格として選択した。そ してアミド基の最適な空間配置を見いだすために、ベンゾシクロアルケン環の1位に対して 以下の修飾をデザインした (Figure 8)。

- (1) 既存作動薬のインドール環、ナフタレン環と同様な endo 型二重結合の導入
- (2) Exo 型(環外)二重結合の導入、幾何異性体(E体、Z体)の検討
- (3) 二重結合を還元した飽和体に関する光学異性体 (S体、R体)の検討

同時に、以下の検討を計画した。

- (4) シクロアルケン環の大きさの検討(5員環、6員環および7員環)
- (5) ベンゾシクロアルケン環とアミド部分間の炭素鎖長の検討
- (6) アミドアルキル鎖長の検討
- (7) シクロアルケン環への置換基導入

次に、もう1つの重要なファーマコフォアであるアルコキシ基の最適な立体配座を明らか にするために、次のようなデザインを行った。リガンドのアルコキシ基が MT₁ 受容体の His195 残基と水素結合するためには、アルコキシ基の酸素原子が水素受容体となる必要が ある。水素受容体として重要な役割を果たす酸素原子上の孤立電子対について、その方向性 を制御するために、次に示す構造変換を計画した。

- (1) アルコキシ基のオルト位への置換基導入
- (2) 導入した置換基により制御されたアルコキシ基の立体配座から、MT, 受容体との 結合に最適な立体配座の予測
- (3) 二環性ベンゾシクロアルケン誘導体での予測を基にした、ジヒドロベンゾフラン 環およびその類縁複素環(三環性ベンゾシクロアルケン誘導体)への変換による アルコキシ基の立体配座の固定

以上の計画を基に、睡眠障害治療薬の創製を目的とした MT1 受容体選択的作動薬の研究 を開始した。

melatonin

benzocycloalkene derivatives

Figure 8. Design of benzocycloalkene derivatives for melatonin receptor agonists. The structure shows (a) introduction of an *endo*-double bond, (b) introduction of an *exo*-double bond followed by E/Z separation, and (c) introduction of a chiral center. Substitution (R^2) on the benzene ring to restrict the conformation of the alkoxy group (OR¹). In addition, ring size (n), substituents (R^1 , R^3 , R^4) and the length of the side chain (m) are represented.

本論文では、以下の規則に従って化合物の位置番号を記した。

2,3-dihydrobenzofuran

2,3-dihydro-1H-indene (indan)

3,5,6,7-tetrahydro-2H-

indeno[5,6-b]furan

7.8-dihydro-6H-

indeno[4,5-d][1,3]dioxole

6,7,8,9-tetrahydro-5Hbenzocycloheptene

2,3,8,9-tetrahydro-7Hindeno[4,5-b][1,4]dioxine

1.2.3.7.8.9-hexahydro indeno[5,4-b][1,4]oxazine

1,6,7,8-tetrahydro-2Hindeno[5,4-b]furan

7.8-dihvdro-6Hindeno[4,5-d][1,3]oxazole

第2章 抗酸化作用を有するジヒドロベンゾフラン誘導体の合成 51)

第1章第4節で述べたように、抗酸化作用とドーパミン遊離抑制作用を併有し、かつ医薬 品への適用を考慮してフェノール誘導体よりも生体内安定性、物性などの面でより優れてい ると予想される 5-ベンゾフランアミン誘導体を分子設計した。第2章ではベンゾフランアミ ン誘導体の合成に関する研究について述べる。一般的な誘導体合成については第1節で、ま た不斉炭素を有するベンゾフランアミン誘導体の中で 24n の光学活性体の合成については第

第1節 5-ベンゾフランアミン誘導体の合成

第1章第4節で述べた6をプロトタイプの化合物として、その置換基変換を行った。5-ベ ンゾフランアミン誘導体の合成上のポイントは、ジヒドロベンゾフラン環5位への窒素原子 の導入と考えられる。第1項ではフェノール誘導体とジアゾニウム化合物との縮合反応を利 用して窒素原子を導入し、ベンゼン環上ならびに2位の置換基変換を行った。第2項ではニ トロ化による窒素原子の導入を利用した3位の置換基変換について、また第3項では主に、 キノン誘導体と芳香族アミン誘導体との縮合反応による窒素原子の導入を利用した5位アミ ノ基上の置換基変換について述べる。

第1項 ベンゼン環上ならびに2位の置換基変換

プロトタイプの化合物 6 は Scheme 1 に従って合成した。2,3,5-トリメチルフェノール (1) をスルファニル酸のジアゾニウム塩を用いてアゾ化合物とした後にハイドロサルファイトナ トリウム還元に付し、アミノフェノール誘導体 2 を得た。この 2 をホルミル化した後、炭酸 カリウムを塩基に用いてメタリル化した。得られた 4 を N,N-ジエチルアニリン中 200 °C で 処理して Claisen 転位成績体 5 に導き、さらにメタノール中で塩酸処理することにより、ジ ヒドロベンゾフラン環の構築ならびに脱ホルミル化が一挙に進行した 5-ベンゾフランアミン 誘導体 6 が得られた。

化合物 6 の脱メチル体である 11a-d も、6 の合成と同様の方法を用いて合成した (Scheme 2)。なおアセトアミド基のオルト位にメチル基を有する 9b および 9c の酸処理(塩酸:メタ

ノール=3:10)の際にはアセトアミド体 10b、10c が単離でき、これらをさらに高濃度の塩酸(塩酸:メタノール=1:1)を用いて11b、11cに導いた。

4 位に極性基を有する 13 および 14 の合成は、Scheme 2 に記した 10c を原料に用いた (Scheme 3)。初めに 10c をニトロ化して 12 に導いた後アセトアミド基の加水分解を行い、13 を得た。さらに 13 のニトロ基を還元し、4 位にアミノ基を有する 14 を得た。

Scheme 1^a

^{*a*} (a) 4-Sulfobenzenediazonium chloride; (b) $Na_2S_2O_4$; (c) HCOOH; (d) methallyl chloride, K_2CO_3 ; (e) *N*,*N*-diethylaniline, 200 °C; (f) 35% aq.HCl/CH₃OH (3:10, v/v).

Scheme 2^{*a*}

^a (a) Methallyl chloride, K₂CO₃; (b) *N*,*N*-diethylaniline, 200 °C; (c) 35% aq.HCl/CH₃OH (3:10, v/v); (d) 35% aq.HCl/CH₃OH (1:1, v/v).

Scheme 3^a

^a (a) HNO₃, Ac₂O; (b) 35% aq.HCl/CH₃OH (3:10, v/v); (c) H₂/Pd-C.

また、7位に極性基を有する 18 は Scheme 4 に従って合成した。Scheme 2 に示す方法と同様の方法を用いて合成した 15 をパラホルムアルデヒドとジメチルアミンを用いた Mannich反応に付し、得られたジメチルアミノメチル体 16 を塩酸/メタノールで処理してジヒドロベンゾフラン誘導体 17 を得た。この 17 の 5 位アセトアミド基の加水分解は、アミノ基の両オルト位に置換するメチル基の立体障害のために通常の酸加水分解ではほとんど進行せず、封管中、5 N 水酸化ナトリウム水と共に加熱する方法を用いた。なお Mannich反応の際に、出発原料の 15 の代わりにホルミル基で 5 位アミノ基を保護した 9a を原料として用いた場合、目的物とする Mannich反応成績体はほとんど得られなかった。

7 位に脂溶性の高い置換基を有する 20 および 21 は、Scheme 2 で得られた 9a から合成した (Scheme 5)。化合物 9a に対して再びメタリル化、Claisen 転位を行い、2,6-ジメタリル フェノール誘導体 19 を得た。この 19 を塩酸/メタノールで処理すると、二重結合の異性化、ホルムアミド基の加水分解を伴ってジヒドロベンゾフラン環が構築された 20 が得られた。 さらに 7 位のイソブテニル基を水素添加し、イソブチル基を有する 21 を得た。

Scheme 4^a

Scheme 5^a

^a (a) (HCHO)_n, (CH₃)₂NH; (b) 35% aq.HCl/CH₃OH (3:10, v/v); (c) 5 N aq.NaOH in a sealed tube, 180 °C.

^a (a) Methallyl chloride, K₂CO₃; (b) N,N-diethylaniline, 200 °C; (c) 35% aq.HCl/CH₃OH (1:1, v/v); (d) H₂/Pd-C.

次にベンゼン環上の置換基をメチル基に固定して、ジヒドロベンゾフラン骨格2位の置換 基変換を行った。

フェノール誘導体 5 を酢酸ナトリウムの存在下で臭素と反応させると、2-ブロモメチル体 22 が得られた (Scheme 6)。得られた 22 を N,N-ジメチルホルムアミド中、水素化ナトリウム を用いてチオール類と反応させ 23a-j に誘導した後に塩酸/メタノールにより脱ホルミル化 を行い、リンカーとして硫黄原子を有する 24a-j に導いた。

一方、ジヒドロベンゾフラン環2位の立体障害が大きいために、アルコール類、アミン類 との縮合反応は上記の条件ではほとんど進行しなかった。アルコール類については、水素化 ナトリウムによりアルコキシドとした後、封管中で加熱縮合させた。この場合2位の置換 反応と同時に、アミドーエステル交換反応による5位アミノ基の脱保護も進行し、ベンゾ フランアミン誘導体24k、24lが1工程で得られた。リンカーとして窒素原子を有する化合 物については、アミン類を過剰に用いて封管中で反応させ目的とする24m-uを1工程で得 た。なお、融点の高いアミン類を縮合させる際は溶媒としてトルエンを用いた。また、本反 応において1当量のアミン類はホルミル基への求核剤として消費されることから、22のホ ルムアミド基を加水分解することにより得られる25を原料に用いてトリエチルアミンの存 在下で縮合反応を行うと、わずかに過剰のアミン類を用いるだけで目的物が収率良く得られ た。

Scheme 6^a

^a (a) Br₂, NaOAc; (b) R'SH, NaH/DMF, 100 °C; (c) 35% aq.HCl/CH₃OH (1:1, v/v); (d) R'OH, NaH or R'R"NH (10 eq) in a sealed tube, 180 °C; (e) R'R"NH (1.2 eq), $(C_2H_5)_3N$ in a sealed tube, 180 °C.

リンカーが炭素原子である化合物は Scheme 7 に従って合成した。2-メタリルフェノール 誘導体 5 を炭酸水素ナトリウムの存在下、*m*-クロロ過安息香酸で処理して 2-ヒドロキシメ チル体 26 に導いた。この際、炭酸水素ナトリウムの非存在下で反応を行うと中間体として 化合物 5 のエポキシド体が単離でき、これは 1 N 塩酸で処理することにより容易に 26 に変 換された。得られた 26 の水酸基を Swern 酸化により酸化して 27 に導いた後に、Horner-Emmons 反応を行いオレフィン体 28 を得た。さらに塩酸/メタノール処理によるホルムア ミド基の加水分解反応を行うと、同時にエステル交換も進行してアクリル酸メチル誘導体 29 が得られた。同様にしてアルデヒド体 27 を Wittig 反応によりオレフィン体 30 に導き、 さらに二重結合を水素添加した後にアミノ基の脱保護を行い、2 位にアラルキル基を有する 32 を得た。

Scheme 7^a

^{*a*} (a) *m*-CPBA, NaHCO₃; (b) DMSO, (COCl)₂; (c) $(C_2H_5O)_2P(O)CH_2COOC_2H_5$, NaH; (d) 35% aq.HCl/CH₃OH (1:1, v/v); (e) $(C_6H_5)_3P(Br)CH_2C_6H_4$ -4-F, NaH; (f) H₂/Pd-C.

第2項 3位の置換基変換

3 位に置換基を有する化合物は Scheme 8 に従って合成した。2,3,5-トリメチルフェノール のオルト位選択的臭素化⁵²⁾、続く *O*-メチル化により得られるブロモアニソール誘導体 33 を、 *n*-ブチルリチウムによりリチオ化した後にイソプロピルケトン類と縮合させ、3 級アルコー ル誘導体 34a-g に導いた。化合物 34a-g を臭化水素酸中で加熱すると、メチルエーテル部分 の開裂、3 級アルコール部分の脱水ならびにジヒドロベンゾフラン骨格の構築が一挙に進行 し、3 位に置換基を有する 35a-g が得られた。さらにニトロ化によりジヒドロベンゾフラン 骨格の5 位に窒素原子を導入した後、パラジウム炭素を触媒に用いてニトロ基を還元し、目 的とする3 位に置換基を有するベンゾフランアミン誘導体 37a-g を得た。

Scheme 8^a

^a (a) n-C₄H₉Li; (b) RCOCH(CH₃)₂; (c) aq.HBr; (d) HNO₃, Ac₂O; (e) H₂/Pd-C.

第3項 5位窒素原子上の置換基変換

初めに、6を原料に用いて5位アミノ基の修飾を行った (Scheme 9)。化合物6に対してアシル化あるいはスルホニル化を行い 38a-c とした後に、アミド体 38a、38b を水素化リチウムアルミニウム還元に付し、モノアルキル体 39a、39b を合成した。

アミノ基上に芳香環を有する化合物は Scheme 10 に従って合成した。メタリルキノン誘導体 40 を四塩化チタン⁵³⁾の存在下で芳香族アミンと縮合させ、イミノ体 41a-c に導いた。この縮合反応は位置選択的に進行し、もう一方のカルボニル基と縮合した異性体の存在は全く認められなかった。この 41a-c をハイドロサルファイトナトリウムを用いて還元した後、得られたアミノフェノール誘導体 42a-c を塩酸/メタノールで閉環して目的とする 43a-c を得た。

また Scheme 10 に示すように、5 位窒素原子上にジヒドロベンゾフラン環を置換基として 有する 43d の合成も行った。この 43d は中心のアミノ基が 2 つのジヒドロベンゾフラン環 に結合しているため、抗酸化作用がより強くなることが期待される。キノン誘導体 40 とベ ンゾフランアミン誘導体 11d を前述した方法に従って縮合させると、目的とするイミノ体 41d ではなく、41d がさらに還元されたアミノフェノール誘導体 42d が得られた。これは、 一旦生成したイミノ体 41d が反応系内に存在していたベンゾフランアミン誘導体 11d によ り還元された結果生成したものと考えられる。

さらに、芳香族アミンとしてベンゾフランアミン誘導体 6 を用いた実験も行った (Scheme 11)。この場合は目的とするイミノ体 44 あるいはその還元体は全く得られず、キノン誘導体 40 の還元体であるヒドロキノン誘導体 45 と、ベンゾフランアミン誘導体 6 の酸化成績体 46 が得られた。2,6-キシリジン(2,6-ジメチルアニリン)を芳香族アミンとして用いた場合に は対応するイミノ体が得られることから、芳香族アミンとして 6 を用いた際に縮合体が得ら れなかったのは 6 のアミノ基近傍の立体障害が原因ではなく、6 がその高い還元能により縮 合する前にキノン誘導体 40 を還元したためと考えられる。実際、ベンゾフランアミン誘導 体と安定ラジカルである DPPH との反応速度定数をストップドフロー法で測定してみると、 キノン誘導体 40 との縮合体が得られた 11d の反応速度定数は 6.4×10³ M⁻²S⁻¹であったが、ヒ ドロキノン誘導体 45 を与えるのみであった 6 の反応速度定数は 5.1×10⁴ M⁻²S⁻¹ と、より大き な値を示した。 Scheme 9^a

^a (a) HCOOH, CH₃COCl or CH₃SO₂Cl; (b) LiAlH₄.

Scheme 10^a

^{*a*} (a) TiCl₄, RNH₂ (R=a, b, c); (b) Na₂S₂O₄; (c) 35% aq.HCl/CH₃OH (3:10, v/v); (d) TiCl₄.

Scheme 11

第2節 光学活性体の合成

米国 FDA (Food and Drug Administration)の通達により、不斉中心を有する医薬品は光学活性体として開発するという考えが現在では一般的となっている。⁵⁴⁾著者がターゲットとしている活性酸素種の大部分は受容体、酵素などとは異なり光学活性体ではないことから、抗酸化作用に関して光学活性体間で作用の違いは認められないと想定された。しかしながら、ドーパミン抑制作用あるいは薬物動態に関しては光学活性体間で異なる結果となる可能性があることから、ベンゾフランアミン誘導体の光学活性体について合成検討を行った。

5-ベンゾフランアミン誘導体は殺虫剤⁵⁵⁾、利尿薬⁵⁶⁾、鎮痛薬⁵⁷⁾などとして知られている が、ジヒドロベンゾフラン環の2位に不斉炭素を有する光学活性体に関する報告はない。ま た、4位、6位あるいは7位にアミノ基を有するジヒドロベンゾフラン誘導体についても光 学活性体で単離された報告はない。ここではジヒドロベンゾフラン環の2位に不斉中心を有 する24nを選出して、第1項ではラセミ体の光学分割による光学活性体の合成、第2項では キラル合成素子を用いた光学活性体の立体選択的な合成について述べる。

第1項 光学分割による合成⁵¹⁾

化合物 24n は不斉炭素の近傍に塩基性の窒素原子があることから、ジアステレオマー法 による光学分割を試みた。キラルな酒石酸、リンゴ酸、マンデル酸、乳酸などの有機酸を検 討した結果、マンデル酸を光学分割剤に用いた場合に良好な結果が得られることが明らかと なった (Scheme 12)。すなわち 24n と等モル量の (S)-マンデル酸を溶解した後に濃縮し、残 渣を 2 回再結晶することで、収率 40%で光学的に純粋な (S)-24n (S)-マンデル酸塩が得られ た。また再結晶母液から遊離塩基を回収した後に (R)-マンデル酸を用いて同様の処理を行 うことで、収率 40%で光学的に純粋な (R)-24n (R)-マンデル酸塩が得られることが明らかと なった。本法は簡便な操作で収率良く高純度の光学活性体が得られ、大量合成にも応用可能 な方法であった。

なお、光学活性体の絶対構造は (S)-24n (S)-マンデル酸塩を用いた X 線結晶構造解析により決定した (Figure 9)。

Scheme 12

Figure 9. A stereoscopic molecular view of (S)-24n (S)-mandelate as determined by X-ray crystallographic analysis.

第2項 (S)-24n のキラル合成⁵⁸⁾

第1項で述べたように、24n をキラルなマンデル酸を用いて光学分割することにより、 24n の光学活性体が効率良く得られることが明らかとなった。しかしながら一方の光学活性 体のみが必要の場合には、比較的高価な中間体である4-フェニルピペリジンを含む合成原料 の半分は利用できないことになる。このことから、さらに効率的な合成法を見いだすために、 (S)-24n を合成ターゲットとしてキラル合成の検討を行った。

ジヒドロベンゾフラン誘導体のキラル合成法としては、アリルフェノールの不斉 Wacker 型反応によるジヒドロベンゾフラン環の構築⁵⁹⁾、あるいはキラルなグリシジルスルフィド を用いた立体選択的合成⁶⁰⁾ などが知られている。今回著者は、キラルな 2-メチルグリシジ ルトシラートを合成素子とした (*S*)-24n の合成を計画した (Scheme 13)。すなわち (*S*)-24n は 2 位に脱離基を有する化合物 D から得られると考えた。また化合物 D は、キラルな 2-メ チルグリシジルトシラートに対してトリメチルフェノール誘導体 E から 2 段階の求核攻撃 を行うことで得られると考え、合成検討を行った。

初めに 2,3,5-トリメチルフェノールの 6 位を選択的に臭素化した後、得られたブロム体 47 のフェノール性水酸基をメトキシメチルエーテルとして保護し、48 を得た (Scheme 14)。こ の 48 をリチオ化した後三臭化ホウ素ジエチルエーテル錯体 ⁶¹⁾の存在下で (*R*)-2-メチルグリ シジルトシラート ⁶²⁾(94% ee ⁶³⁾)と縮合させ、3 級アルコール体 49 を得た。次いで得られた 49 を炭酸カリウムで処理することによりオキシラン環を再構築し、50 を得た。化合物 50 を 含水トリフルオロ酢酸で処理すると立体選択的にジヒドロベンゾフラン環の構築が進行し、 51 が 93% ee の光学純度で得られた。なお 51 の光学純度は、2-メチルグリシジルトシラー トのラセミ体 ⁶⁴⁾から同様にして得られた 51 のラセミ体を用いて条件設定したキラルカラム LC/MS により決定した。

化合物 51 へのピペリジン環の導入は、初めに 51 をメシラート 52 へ導いた後、炭酸カリ ウムの存在下で 4-フェニルピペリジンと縮合させた。得られた 53 の遊離塩基を塩酸塩に導 いてエタノール―ジエチルエーテルから再結晶すると、光学純度が 99.4% ee に向上するこ とが明らかとなった。⁶⁵⁾

ジヒドロベンゾフラン環 5 位への窒素原子の導入はジアゾカップリング反応を用いた。す なわち、53 を 4-ニトロベンゼンジアゾニウムクロリド⁶⁰ と酢酸中で縮合させることにより、 アゾ化合物 54 に導いた。さらに 54 を Raney-nickel を触媒に用いた加水素分解によりアミノ 体へと誘導した後に二塩酸塩とすることで、目的とするキラルな 24n (99.8% ee) を得た。以上のようにして合成した 24n の比旋光度の符号およびキラルカラム LC/MS における保持時間が、X 線結晶構造解析により絶対構造が明らかとなっている S 体と一致したことから、得られたキラルな 24n は S 体であることが判明した。また同時に、オキシラン 50 からジヒドロベンゾフラン誘導体 51 への環化反応は立体反転で進行したことが明らかとなった。

Scheme 13

Scheme 14^a

^a (a) MOMCl, NaH; (b) 1) n-C₄H₉Li, 2) (*R*)-2-methylglycidyl tosylate, BF₃•O(C₂H₅)₂; (c) K₂CO₃; (d) aq. TFA; (e) MsCl, (C₂H₅)₃N; (f) 4-phenylpiperidine, K₂CO₃; (g) HCl; (h) 4-nitrobenzenediazonium chloride; (i) H₂/Raney-nickel.

第3節 結論

脳血管障害急性期/頭部外傷治療薬の創製を目的として、5-ベンゾフランアミン誘導体の 合成を行った。合成にあたってのポイントとなる窒素原子の導入に関しては、3種類の方法、 すなわち(1)フェノール誘導体とジアゾニウム塩とのジアゾカップリング反応、(2)ニ トロ化ならびに(3)キノン誘導体と芳香族アミン類との縮合反応を用いた。

2 位に不斉中心を有する化合物の中で、24n について光学活性体の合成を行った。ラセミ 体の光学分割については、種々の光学分割剤を検討した結果 (S)-マンデル酸を分割剤として 用いることにより (S)-24n が 40% の収率で得られることが明らかとなった。またその際の 再結晶母液から得られる 24n の遊離塩基を (R)-マンデル酸塩として再結晶することにより、 (R)-24n が同様に 40% の収率で得られた。本光学分割法は 2 回の再結晶により光学的に純粋 な化合物が高い回収率で得られ、また分割剤として用いたキラルなマンデル酸は高純度のも のが安価に入手できることから、工業的にも十分利用可能な方法である。

次に、一方の光学活性体を選択的に合成する方法として、キラル合成素子を用いた合成法 の検討を行った。アリルアルコール類の Katsuki-Sharpless 酸化により容易に得られるキラル なグリシドール類は、アミノ酸、糖類と並んで多くの天然物や生理活性物質の合成に合成素 子として利用されてきた。グリシドール類は炭素数 3 の単純な化合物であるが、その特徴は いずれの炭素原子も反応性を有していることにある。今回このグリシドール類の反応性に着 目し、メタリルアルコールの Katsuki-Sharpless 酸化、続くトシル化により容易に得られる (*R*)-2-メチルクリシジルトシラートを合成素子として (*S*)-24n の合成を行った。鍵反応であ るオキシラン 50 の分子内閉環反応を利用したジヒドロベンゾフラン環の構築により、立体 反転で光学純度をほとんど損なうことなくジヒドロベンゾフラン誘導体 51 が得られた。ま た中間体 53 を再結晶することで光学純度が向上し、最終的にほぼ純粋な (*S*)-24n を得るこ とができた。本法は、2 位に不斉炭素を有するジヒドロベンゾフラン誘導体の合成に応用で きる有用な合成法と考えられる。 第3章 抗酸化作用と中枢神経障害改善作用 51)

第1節 薬効評価試験

本章では、第2章で合成した 5-ベンゾフランアミン誘導体の生物活性について述べる。 初めに *in vitro* の抗酸化作用の評価として、ラット肝臓ミクロソームホモジネートを用いた 過酸化脂質の生成に対する化合物の抑制作用を、2-チオバルビツール酸 (TBA) 法⁶⁷により 定量した。過酸化脂質生成抑制作用の評価結果については第2節第1項で述べる。

また中枢性抗酸化剤の開発研究には中枢移行性を考慮に入れた *in vivo* の評価系が必要と 考え、塩化第一鉄のマウスくも膜下腔内投与(intrathecal injection; it 投与)により惹起され る異常行動に対する化合物の抑制作用を調べるマウス一塩化第一鉄—it 法を新たに確立した。 マウス—塩化第一鉄—it 法による評価結果については第2節第2項で述べる。

次に、強い抗酸化作用を有する化合物を選出して、ドーパミン遊離に対する抑制作用を検 討した。ここではドーパミン遊離作用を有するメタンフェタミン投与により、ドーパミン遊 離を介して惹起されるマウスの自発運動亢進⁶⁸⁾を指標にして、化合物のドーパミン遊離抑 制作用を調べた。またドーパミン受容体作動薬であるアポモルフィンを用いてメタンフェタ ミンの場合と同様にして化合物の評価を行い、化合物の作用メカニズムを検討した。これら の評価結果については第3節で述べる。

さらに、病態モデル動物における作用については第4節で述べる。脳血管障害急性期の病 態モデルとしては、45分間の脳虚血を施した一過性脳虚血ラット⁶⁹を用いた。一過性脳虚 血ラットの死亡率に対する化合物の改善作用についての検討は、第4節第1項で述べる。

また頭部外傷に対する作用は、線条体に機械的損傷を与えたラットを用いて調べた。化合物の頭部外傷改善作用については第4節第2項で述べる。

第2節 抗酸化作用

第1項 過酸化脂質生成抑制作用

化合物の過酸化脂質生成抑制作用を、過酸化脂質の生成を 50% 抑制する化合物濃度 (IC₅₀値)として Table 3 に示す。また IC₅₀値が 1 µM よりも大きい値を示す化合物につい ては、1 µM の濃度における過酸化脂質生成に対する抑制率を Table 3 の括弧内に示す。本項 では構造—活性相関を中心に、過酸化脂質生成抑制作用に関する 2 つの重要な要素について 述べる。

(1) 化合物の極性と過酸化脂質生成抑制作用

脂質の過酸化を抑制するためには、化合物が脂質二重膜に到達して活性酸素種(過酸化脂質など)を消去しなければならない。このことから、化合物が十分に作用を発揮するためには化合物の脂溶性が高い方が好ましく、過酸化脂質生成抑制作用と抗酸化剤の logP との相関関係を示す報告もある。⁷⁰⁾

ベンゾフランアミン誘導体の場合も、ベンゼン環上のメチル基の代わりにより脂溶性の高 いイソブテニル基 (20)、イソブチル基 (21) を導入した化合物に、メチル基を有する 6 より も強い作用が認められたが、脂溶性の低いジメチルアミノメチル基を有する 18 は 6 と比較 して活性が大きく減弱した。また 2 位の置換基に関しても脂溶性の高いベンゾチアゾリル基 (24f)、フェニルピペリジノ基 (24n)、フェニルピペラジノ基 (24q) などの置換基を有する化 合物に強い作用が認められた。一方、24n のフェニル基を除去した 24m、あるいはイミダゾ リル基 (24e、24u)、水酸基 (24i)、カルボキシル基 (24j)、メチルピペラジノ基 (24p) など の極性基を有する化合物には強い作用は認められなかった。なお、2 位リンカー部分の原子 (窒素、酸素、硫黄)の違いによる活性への影響は認められなかった。3 位の修飾に関して も 3 位ベンゼン環上のアルキル鎖が伸長し脂溶性が高くなるに従って活性は増強したが (37a-e)、極性の高いピリジル基を有する 37g には強い活性は認められなかった。5 位アミノ 基上の置換基に関しても同様の傾向が認められ、フェニル基を有する 43a と比較してピリジ ル基を有する 43c の過酸化脂質生成抑制作用は減弱した。 (2) アミニルラジカルの安定性と過酸化脂質生成抑制作用

(a)ベンゼン環上の置換基効果

第1章第4節において、フェノール性抗酸化剤の抗酸化作用はフェノキシルラジカルの安 定性と相関していることを述べた。ベンゾフランアミン誘導体においても、強い抗酸化作用 を発現するためには活性酸素種を消去した際に生成するアミニルラジカル(窒素ラジカル) がベンゼン環のπ電子と共役して安定化されることが必要と考えられる。すなわち、電子 欠損状態であるアミニルラジカルに電子を供給するためにベンゼン環の電子密度を高めるこ とが重要であり、電子供与性基を導入してベンゼン環の電子密度を高めることでアミニルラ ジカルは安定化し、その結果、抗酸化作用は強くなると想定される。

Table 3 に示すように、ベンゼン環上に置換基を持たない 11d と比較して、電子供与性の メチル基を有する化合物、特に3つのメチル基を有する6はより強い過酸化脂質生成抑制作 用を示した。また同様に、電子供与性基であるアミノ基をベンゼン環上の置換基として有す る 14 にも強い作用が認められたが、電子吸引性基であるニトロ基を有する 13 には、1 µM の濃度ではほとんど過酸化脂質生成抑制作用が認められなかった。

(b) 5位アミノ基上の置換基効果

ベンゾフランアミン誘導体が強い抗酸化活性を発現するためには、ベンゼン環上に電子密 度を高める置換基が必要なことと同様に、5 位アミノ基上の置換基に関してもアミニルラジ カルを安定化させる置換基が好ましいと考えられる。アシル基、スルホニル基などの電子吸 引性基を有する 38a-c には全く活性が認められなかったが、窒素原子上に芳香環を有する 43a および 43b は、芳香環の π 電子が共役することによりアミニルラジカルが安定化され、 強い活性を示した。従って、より強いラジカル安定化作用を有するジヒドロベンゾフラン環 を置換基として有する 43d は、全化合物の中で最も強い過酸化脂質生成抑制作用を示した。

5 位アミノ基上にアルキル基を有する **39a** および **39b** には強い活性が認められなかった。 この原因は、アルキル基の導入により過酸化脂質がジヒドロベンゾフラン環 5 位の窒素原子 へ接近しにくくなったためと考えられる。

第2項 マウス―塩化第一鉄―it 法による in vivo 評価

ラット大脳皮質に塩化第一鉄を投与すると、ニューロンの異常興奮によりてんかん様作用 が起こること、ならびに過酸化脂質の生成に伴い脳浮腫が起こることなどが知られている。 またこれらの症状は、α-トコフェロールなどの抗酸化剤の投与で改善されることが報告され ている。⁷¹⁾ これらはいずれも 2 価の鉄イオンが関与する Haber–Weiss 反応(Fenton 反応)⁷²⁾ により活性酸素種の一種であるヒドロキシルラジカルが生成し、それが不飽和脂質に富んだ 神経細胞膜を損傷し細胞の壊死による浮腫が生じたものと解釈される。塩化第一鉄をマウス くも膜下腔内に投与(it 投与)した場合にも知覚、運動神経の麻痺が生じるが、これは上記 と同様の反応によるものと考えられる。強い抗酸化作用を有し、血液一脳関門(BBB)の透 過を含めた薬物動態に優れた化合物がその障害を完全に防止することができると想定される ことから、著者は本モデルを中枢系抗酸化剤の *in vivo* 評価系として位置付け、ベンゾフラ ンアミン誘導体の評価を行った。

化合物は塩化第一鉄投与 30 分前に経口投与し、塩化第一鉄投与 15 分後から 60 分後まで Table 2 に示す行動変化をブラインドでスコアリングした。なお、ID₅₀ 値は用量反応曲線の 一次回帰直線から求めた。抗酸化剤として知られている塩基性解熱鎮痛薬 aminopyrine は、 本評価系において 108 mg/kg, po (95% 信頼限界; 71.1–139 mg/kg, po) の ID₅₀ 値を示したが、 α-トコフェロールの 100 mg/kg の経口投与ではほとんど作用は認められなかった。

Table 2. マウス―塩化第	─鉄─it 法における行動変化と評点
------------------	--------------------

評点	行動変化
0	正常
1	下肢、下腹部をしきりに噛む
2	以下の3つの反応のいずれかが認められる
	a) 激しく、時には転げ回りながら下半身を噛む
	b) 外部刺激に対する過敏反応が認められ、攻撃的になる
	c) 振せんが起こる
3	間代性けいれんが認められる
4	強直性けいれんが認められる、もしくは片側または両側肢の麻痺が認められる
5	死亡する

ベンゾフランアミン誘導体の評価結果を Table 3 に示す。初めにベンゼン環上の置換基効 果を見てみると、3 つのメチル基を有するプロトタイプの化合物 6 には強い活性 (ID₅₀=7.8 mg/kg, po) が認められたが、メチル基の数が減少するに従って活性が減弱し、メチル基を持 たない 11d には全く活性が認められなかった。この結果は *in vitro* 過酸化脂質抑制作用の評 価結果と良く一致し、メチル基による抗酸化作用の増強と、脂溶性の増大による組織移行性 の上昇が反映されたものと思われる。また *in vitro* では 6 よりも強い抗酸化作用を示したジ アミノ体 14、イソブテニル体 20 およびイソブチル体 21 には *in vivo* では弱い作用しか認め られなかった。以上の結果から、マウス一塩化第一鉄一it 法ではベンゼン環上に 3 つのメチ ル基を有する 6 が最も強い活性を示すことが明らかとなった。

次に3位の置換基効果を見てみると、いずれの置換基においても無置換体6よりも活性は 減弱した。また、活性減弱の程度はフェニル基のパラ位にアルキル置換基を有するもので著 しいことから (37b-e)、分子が大きくなると活性発現に不利になると考えられた。なお、活 性発現に際しては BBB の透過能が重要な要素となるが、分子量が増大すると BBB の透過能 は低くなることが報告されている。⁷³⁾

2 位の置換基についても、水酸基 (24c および 24i)、カルボキシル基 (24j) などの極性基 を有する化合物では活性が大幅に低下したが、それ以外の化合物は *in vivo* においても抗酸 化作用が認められた。リンカー部分の原子の種類に関しては、窒素原子を有する化合物に強 い活性が認められ、特にフェニルピペリジノ基を有する 24n が強い活性を示した。なお、 24n の両光学活性体には同等の活性が認められた。2 位の置換基に関しても、かさ高い置換 基を導入した 24r には活性が認められなかった。

5 位アミノ基を修飾した化合物としてアシル基、スルホニル基を導入した 38a-c には活性 が認められず、*in vitro* における抗酸化作用を反映した結果となった。アルキル基を導入し た 39a および 39b は弱いながらも *in vivo* 活性を保持していたが、*in vitro* で強力な抗酸化活 性を示した *N*-アリール体 43a-d は *in vivo* では全く作用を示さなかった。

							Lipid Peroxidation ^a	Mouse-F	FeCl ₂ -it Assay ^b
No	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	IC ₅₀ (μM)	ID ₅₀ (mg/kg, po)	95% Confid Limits
6 ^c	CH ₃	CH ₃	CH ₃	CH ₃	Н	Н	0.76	7.8	6.2–10.5
11a ^c	CH_3	CH_3	Н	CH ₃	Н	н	(14)	16.3	10.9-23.6
11b ^c	CH_3	Н	CH ₃	CH ₃	Н	н	(19)	32.3	20.6-42.7
11c ^c	Н	CH ₃	CH ₃	CH ₃	Н	Н	(26)	24.4	17.2–33.9
11d ^c	Н	Н	н	CH ₃	Н	Н	(5)	> 100	
13 ^c	NO_2	CH ₃	CH ₃	CH ₃	Н	Н	(0)	> 100	
14 ^c	NH_2	CH ₃	CH ₃	CH ₃	Н	Н	0.30	> 50	
18 ^d	CH ₃	CH ₃	CH ₂ N(CH ₃) ₂	CH ₃	н	Н	(4)	> 50	
20 ^c	CH ₃	CH ₃	$CH=C(CH_3)_2$	CH ₃	Н	Н	0.30	21.9	16.0-28.0
21 ^c	CH ₃	CH ₃	CH ₂ CH(CH ₃) ₂	CH ₃	н	Н	0.14	13.3	7.5–19.6
24a ^c	CH ₃	CH ₃	CH ₃	CH ₂ SC ₆ H ₅	Н	Н	0.27	24.7	20.0-30.3
24b ^c	CH ₃	CH ₃	CH ₃	CH ₂ SC ₆ H ₄ -4-F	Н	н	0.22	17.9	12.6-22.5
24c ^c	CH ₃	CH ₃	CH ₃	CH ₂ SC ₆ H ₄ -4-OH	н	Н	0.22	> 50	
24d	CH ₃	CH_3	CH ₃	CH ₂ S-4-pyridyl	н	Н	0.63	19.9	14.1-25.3
24e ^c	CH ₃	CH₃	CH ₃	CH₂S⟨N] N CH₃	н	Н	(11)	37.1	32.0-44.0
24f ^c	CH ₃	CH ₃	CH ₃	CH ₂ S-KS	Н	Н	0.07	33.7	30.7–36.7

							Lipid Peroxidation ^a	Mouse-F	eCl ₂ -it Assay ^b
No	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵	R ⁶	IC ₅₀ (μM)	ID ₅₀ (mg/kg, po)	95% Confid Limits
24g ^c	CH ₃	CH ₃	CH ₃	CH ₂ SCH ₂ C ₆ H ₅	Н	H	0.26	32.0	9.1-49.0
24h ^c	CH ₃	CH_3	CH ₃	CH ₂ S(CH ₂) ₂ CH ₃	Н	Н	0.28	24.6	18.7-31.9
24i	CH ₃	CH ₃	CH ₃	CH ₂ S(CH ₂) ₂ OH	Н	Н	(11)	> 50	
24j	CH ₃	CH ₃	CH ₃	CH ₂ S(CH ₂) ₂ COOH	Н	Н	(0)	43.0	34.4-70.8
24k ^c	CH_3	CH ₃	CH ₃	CH ₂ OCH ₂ C ₆ H ₅	Н	Н	0.28	18.6	10.4–25.5
241 ^c	CH_3	CH_3	CH ₃	CH ₂ OCH ₃	Н	Н	0.30	20.1	5.9-33.2
24m	CH ₃	CH ₃	CH ₃	CH ₂ N	Н	Н	(18)	11.7	9.0–14.8
24n	CH ₃	CH ₃	CH ₃		Н	Н	0.07	10.4	7.2–13.6
(S)-24n ^e							NT ^c	10.8	8.2–13.4
(R)-24n ^e							NT	11.6	7.5–16.7
240	CH ₃	CH ₃	CH ₃	CH₂NO	Н	Н	0.41	19.2	11.8–25.8
24p	CH ₃	CH ₃	CH ₃	CH ₂ N_NCH ₃	Н	Н	(10)	25.3	19.9–32.4
24q	CH ₃	CH ₃	CH ₃	CH ₂ N NC ₆ H ₅	Н	Н	0.07	13.1	9.8-18.1
24r ^g	CH ₃	CH_3	CH ₃	CH ₂ N NCH(C ₆ H ₅) ₂	Н	Н	0.07	> 50	
24s ^e	CH ₃	CH ₃	CH ₃	CH ₂ NHC ₆ H ₅	Н	Н	0.26	15.7	11.9–19.2
24t ^e	CH ₃	CH ₃	CH ₃	CH2NHCH2C6H5	Н	Н	0.29	9.1	5.4-18.8
24u ^e	CH ₃	CH ₃	CH ₃	CH ₂ -1-imidazolyl	Н	н	(6)	25.0	18.0-34.5
25 ^c	CH ₃	CH_3	CH ₃	CH ₂ Br	Н	Н	0.30	16.0	12.2-20.6
29 ^c	CH ₃	CH ₃	CH ₃	CH=CHCOOCH ₃ (E)	Н	н	(38)	> 100	
32	CH ₃	CH ₃	CH ₃	$(CH_2)_2C_6H_4-4-F$	Н	Н	0.08	11.5	8.4-15.1

							Lipid Peroxidation ^a	Mouse-Fe	eCl ₂ -it Assay ^b
No	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	IC ₅₀ (μM)	ID ₅₀ (mg/kg, po)	95% Confid Limits
37a	CH ₃	CH ₃	CH ₃	CH ₃	C ₆ H ₅	Н	0.29	24.8	14.5-41.9
37ь	CH_3	CH_3	CH ₃	CH ₃	C_6H_4 -4- CH_3	Н	0.30	> 50	
37c	CH_3	CH_3	CH ₃	CH ₃	C ₆ H ₄ -4-(CH ₂) ₂ CH ₃	Н	0.29	> 50	
37d	CH_3	CH_3	CH ₃	CH ₃	C ₆ H ₄ -4-(CH ₂) ₄ CH ₃	Н	0.05	42.2	26.3-80.2
37e	CH_3	CH_3	CH ₃	CH ₃	C ₆ H ₄ -4-CH(CH ₃) ₂	Н	0.29	> 50	
37f	CH_3	CH_3	CH ₃	CH ₃	C_6H_4 -4-F	Н	0.28	26.7	20.2-36.6
37g	CH ₃	CH_3	CH ₃	CH ₃	3-pyridyl	Н	(22)	32.1	24.1-41.6
38a	CH ₃	CH_3	CH ₃	CH ₃	Н	HCO	(0)	> 100	
38b	CH ₃	CH_3	CH ₃	CH ₃	Н	CH ₃ CO	(-2)	> 100	
38c	CH_3	CH_3	CH ₃	CH ₃	Н	CH ₃ SO ₂	(-1)	> 100	
39a°	CH_3	CH ₃	CH ₃	CH ₃	Н	CH ₃	(18)	16.6	6.6-23.9
39b ^c	CH_3	CH_3	CH ₃	CH ₃	Н	C_2H_5	(16)	38.9	31.3-46.2
43a	CH_3	CH_3	CH ₃	CH ₃	Н	C ₆ H ₅	0.28	> 50	
43b	CH_3	CH_3	CH ₃	CH ₃	Н	C_6H_4 -4-Cl	0.30	> 50	
43c	CH ₃	CH ₃	CH ₃	CH ₃	Н	3-pyridyl	(4)	> 50	
43d	CH ₃	CH ₃	CH ₃	CH ₃	н	H ₃ C	0.03	> 25	

^{*a*} The molar concentration of test compound required to reduce by 50% the amount of lipid peroxide formed in rat liver microsomes. IC_{50} values were determined from four concentrations by nonlinear regression analysis. Percent inhibition at the concentration of 1 μ M is shown in parentheses. ^{*b*} The dose of test compound required to reduce by 50% the score of excitatory behavior induced by intrathecal injection of FeCl₂. ID₅₀ values were generated from three or four doses; 10 animals were used per dose. ^{*c*} Hydrochloride was used. ^{*d*} Oxalate was used. ^{*e*} Dihydrochloride was used. ^{*f*} Not tested. ^{*g*} Trihydrochloride was used.

Table 3 (Continued)

第3節 ドーパミン遊離抑制作用

ドーパミンは虚血性脳血管障害および頭部外傷の際に遊離され、二次障害因子として働く ことが示唆されている。⁶⁾ ここでは、ドーパミン遊離作用を有するメタンフェタミンの投与 により惹起されるマウスの自発運動亢進を指標にして、化合物のドーパミン遊離抑制作用を 検討した。化合物 10 mg/kg を腹腔内投与した 30 分後にメタンフェタミン1 mg/kg を腹腔内 投与し、メタンフェタミン投与 60 分後まで自発運動量を測定した。結果は saline-saline 投 与群と saline-メタンフェタミン投与群、すなわちコントロール群との差を 100% として、 自発運動量の亢進を % 表示した (Table 4)。なお、被検化合物はマウス一塩化第一鉄一it 法 の結果と構造を参考にして選出した。

第1章第4節で述べたように、検討した化合物の中ではプロトタイプの化合物6にコント ロールに対して 68% 抑制と比較的強い活性が認められた。またジヒドロベンゾフラン環か らある程度離れた位置に芳香環を有する化合物 (24a、24d、24g など) にも活性が認められ、 特に、前節で強い *in vitro* および *in vivo* 抗酸化作用を示した 24n が 98% 抑制と最も強力な 抑制作用を示した。

続いて、24n の両光学活性体について自発運動亢進に対する抑制作用を検討した。評価結 果を Table 5 に示す。2 位が S 配置である (S)-24n は、1 mg/kg, ip の用量で有意な抑制作用を 示した。一方、その対掌体である (R)-24n には 3 mg/kg, ip でも抑制作用は認められず、10 mg/kg, ip の投与でわずかに抑制傾向を示した。以上の結果から、24n の光学活性体間でメタ ンフェタミン誘発自発運動亢進に対する抑制作用に差が認められ、S 体が R 体よりも 10 倍 以上強い活性を示すことが明らかとなった。

さらに、強い自発運動亢進に対する抑制作用を示した (S)-24n の作用メカニズムを検討す るために、ドーパミン受容体作動薬であるアポモルフィンにより誘発される自発運動亢進に 対する作用を調べた (Table 5)。その結果、(S)-24n はアポモルフィン1 mg/kg, sc によるマウ ス自発運動亢進を抑制しないことが明らかとなった。以上のことから、(S)-24n はドーパミ ン受容体拮抗薬としてメタンフェタミンによる自発運動亢進を抑制しているのではなく、た とえば異常時におけるドーパミントランスポーターの逆回転を阻害するなど、ドーパミン遊 離を抑制していることが明らかとなった。

Exp no.	Sample	Inducer	Locomotor activity	% Increase
1	saline	saline	194 ± 53**	0
	saline	MAP ^a	1195 ± 142	100
	6 ^{<i>b</i>}	MAP	509 ± 153**	31.5
2	saline	saline	747 ± 268**	0
	saline	MAP	2168 ± 359	100
	$24a^b$	MAP	1098 ± 277*	24.7
	24b ^b	MAP	1625 ± 398	61.8
	24d	MAP	892 ± 237*	10.2
	24e ^b	MAP	2228 ± 403	104.2
	24f ^b	MAP	1391 ± 367	45.3
	24k	MAP	1657 ± 506	64.0
	37a	MAP	1845 ± 190	77.3
	37g	МАР	1488 ± 330	52.1
3	saline	saline	447 ± 276**	0
	saline	MAP	2385 ± 548	100
	$24g^b$	MAP	1099 ± 288	33.6
	24h ^b	MAP	1540 ± 455	56.4
	24l ^b	MAP	1934 ± 461	76.7
	24 n ^{<i>c</i>}	MAP	482 ± 87**	1.8
	24 r ^d	MAP	1664 ± 440	62.8
	24s ^c	MAP	1812 ± 333	70.4
	24t ^c	MAP	1340 ± 398	46.1
	25 ^b	MAP	1115 ± 339	34.5
4	saline	saline	495 ± 128**	0
	saline	MAP	3127 ± 420	100
	24m	MAP	2960 ± 295	93.7
	240	MAP	3209 ± 416	103.1
5	saline	saline	336 ± 56**	0
	saline	MAP	1892 ± 232	100
	24p	MAP	3154 ± 738	181.1

Table 4. Effects of 5-Benzofuranamines on the Methamphetamine-Induced Increase in Locomotor Activity in Mice

Exp no.	Sample	Inducer	Locomotor activity	% Increase
6	saline	saline	402 ± 118**	0
	saline	MAP	2689 ± 591	100
	24q	MAP	1484 ± 632	47.3
	24u ^c	MAP	3950 ± 452	155.1
7	saline	saline	417 ± 38**	0
	saline	МАР	1376 ± 348	100
	32	MAP	1185 ± 187	80.1
	37f	MAP	2156 ± 311	181.3
	39a ^c	MAP	1229 ± 115	84.7

 Table 4 (Continued)

Thirty minutes after ip injection of 5-benzofuranamines at a dose of 10 mg/kg, methamphetamine at a dose of 1 mg/kg was injected ip. The number of mice in each group was 8. Locomotor activity was measured for 1 hr after administration of methamphetamine. *p < 0.05 and **p < 0.01 when compared to the respective saline-methamphetamine-treated controls.^a Methamphetamine.^b Hydrochloride was used.^c Dihydrochloride was used.

Table 5. Effects of (S)- and (R)-24n on the Methamphetamine- and Apomorphine-Induced Increase in the Locomotor Activity in Mice

Sample	Dose (mg/kg, i.p.)	Inducer	n ^a	Locomotor activity	% Increase
saline		saline	10	175 ± 46**	0
saline		MAP ^b	9	1878 ± 431	100
(S)-24n ^c	0.1	МАР	10	2103 ± 451	113.2
	0.3	МАР	9	1102 ± 317	54.4
	1	МАР	9	773 ± 173*	35.1
saline		saline	16	245 ± 74**	0
saline		MAP	14	1196 ± 314	100
(R)-24n ^c	1	MAP	15	1472 ± 257	129.0
	3	MAP	13	1852 ± 493	169.0
	10	MAP	16	889 ± 159	67.7
saline		saline	13	145 ± 46**	0
saline		APO^{d}	11	619 ± 160	100
(S)- 24n ^c	1	APO	11	841 ± 251	124.5

Thirty minutes after ip injection of (S)- and (R)-24n, methamphetamine at a dose of 1 mg/kg, ip or apomorphine at a dose of 1 mg/kg, sc was injected. Locomotor activity was measured for 1 hr after administration of methamphetamine. *p < 0.05 and **p < 0.01 when compared to the respective saline-methamphetamine-treated control group (2-tailed Student's *t*-test). ^{*a*} Number of mice. ^{*b*} Methamphetamine. ^{*c*} Dihydrochloride was used. ^{*d*} Apomorphine.

第4節 脳血管障害急性期/頭部外傷モデル動物に対する作用

医薬品の開発研究においては、実際の病態を反映した適切なモデル動物を選択することが 重要である。強力な抗酸化作用およびドーパミン遊離抑制作用を示した (S)-24n とその対掌 体である (R)-24n について、第1項では、脳血管障害急性期のモデル動物として選択した一 過性脳虚血ラットの死亡率に対する化合物の作用を調べた。また、頭部外傷モデルである一 側線条体破壊ラットの機能障害に対する作用を検討した結果を第2項で述べる。

第1項 一過性脳虚血ラットの死亡率改善作用

あらかじめ両側椎骨動脈を焼灼切断したラットの両側総頚動脈を 45 分間閉塞することに より一過性の脳虚血を施して、血流再開 1、3、7、10 および 14 日後にラットの生死を確認 した。化合物あるいはコントロールとしての生理食塩水は血流の再開通直後、2 時間後およ び 24 時間後の合計 3 回、腹腔内に投与した。化合物投与群と生理食塩水投与群間の生存率 の差は、Fisher の直接確立計算法を用いて検定した。

評価結果を Figure 10 に示す。コントロール群では 45 分間の一過性脳虚血処置翌日に 23 例中 6 例の死亡が確認された。以後死亡数は経時的に増加して 14 日後には 19 例の死亡が観 察され、生存率は 17% となった。化合物 (S)-24n を投与したラットにおいては、虚血一再 灌流直後および 2 時間後の 2 回の投与で虚血処置日の死亡率を用量依存的に改善する傾向が 認められた (Figure 10A)。また虚血一再灌流 24 時間後の投与を経て、3 mg/kg, ip 投与群では 3 日後、5 日後および 14 日後、また 1 mg/kg, ip 投与群では 14 日後に有意な死亡率の改善が 認められた。一方、(R)-24n 投与群では虚血一再灌流 14 日後に有意な改善が認められたもの、 (S)-24n で認められた 3 日後ならびに 5 日後の有意な死亡率改善作用は示さなかった (Figure 10B)。

以上の結果から、より強いドーパミン遊離抑制作用を示す (S)-24n が脳血管障害急性期モ デルにおいてもより強力な死亡率に対する改善作用を示すことが明らかとなった。

Figure 10. Effects of (A) (S)-24n and (B) (R)-24n on the survival rates following 45-min transient cerebral ischemia in rats; *P < 0.05 when compared to the saline-treated control group (two-tailed Fisher's exact probability test).

第2項 一側線条体破壊ラットの機能障害改善作用

第1章第2節で述べたように、脳血管障害とともに頭部外傷の際にも、種々のメディエー タにより遅発性の神経細胞死が引き起こされることが報告されている。¹⁸⁾特に大脳皮質、海 馬に加えて、筋緊張度を調節し筋運動を司っている線条体でこれらメディエータ量の増加が 認められており、震盪性の頭部外傷の際にも線条体が損傷を受けることが示唆されている。 以上のことから、ここでは線条体破壊ラットを頭部外傷の病態モデルとして用いて化合物の 評価を行った。

一側線条体破壊ラットは、ハロタン麻酔下ラットの右側線条体にガラス棒を1分間接触さ せることにより作製した。化合物およびコントロールとしての生理食塩水は、機械的損傷を 与えた直後および2時間後の2回、腹腔内に投与した。またガラス棒を接触させないこと以 外は損傷群と全く同様の処置を施した偽損傷ラット (Sham) も作製した。このモデルにおけ る機能変化は、一側線条体に障害を有する動物において認められるアポモルフィン誘発旋回 運動を指標として用いた。すなわち損傷後3日、7日および14日目にアポモルフィン 0.5 mg/kg を皮下投与し、健常側から障害側への旋回運動を測定することにより障害の程度を調 べた。

評価結果を Figure 11 に示す。損傷を受けた saline コントロール群は、Sham 群と比較して 機能変化の指標である旋回運動が大幅に増加した。一方、(S)-24n 投与群では 0.1 から 1 mg/kg, ip の投与まで有意な神経障害改善作用を示した (Figure 11A)。それに対して (R)-24n は 1 mg/kg, ip 投与群の損傷後 14 日目で初めて有意な改善作用を示したが、0.3 mg/kg, ip 以下 の用量を投与した群には、測定期間中に有意な機能障害改善作用は認められなかった (Figure 11B)。

以上の結果から、一過性脳虚血ラットでの評価結果と同様に頭部外傷モデルである一側線 条体破壊ラットにおいても、(*R*)-24n よりも (*S*)-24n の方がより強力な障害改善作用を示す ことが明らかとなった。

Figure 11. Effects of (A) (S)-24n and (B) (R)-24n on the functional changes after penetration-induced brain injury in rats; **P < 0.01 when compared to the saline-treated control group (two-tailed Dunnett's multiple range test following 2-way ANOVA).

第5節 結論

脳血管障害、頭部外傷の際に二次障害因子として働くと示唆されている活性酸素種および ドーパミンに着目して、抗酸化作用とドーパミン抑制作用を併せ持つ化合物として分子設計 し、合成した 5-ベンゾフランアミン誘導体の生物活性を検討した。

抗酸化作用に関しては 5 位の窒素原子の電子密度を高める、すなわちアミニルラジカルを 安定化させる置換基、ならびに脂質二重膜への親和性を高めるために脂溶性が高い置換基を 導入した化合物に強い作用が認められた。また、新たに確立したマウス一塩化第一鉄—it 法 を用いて中枢性抗酸化剤の *in vivo* 評価を行った。本評価系においては、極性の高い化合物 に加えてかさ高い化合物などにも活性は認められなかった。さらに、ドーパミン遊離促進作 用を有するメタンフェタミンを用いてドーパミン遊離によるマウス自発運動亢進に対する抑 制作用を検討し、以上の結果を基に精査化合物として (S)-24n を選出した。

化合物 (S)-24n とその対掌体である (R)-24n について、病態モデル動物における作用を検 討した。脳血管障害急性期のモデルである一過性脳虚血ラットの死亡率を (S)-24n は 1 mg/kg, ip の投与で有意に改善した。また頭部外傷モデルである一側線条体破壊ラットの機能 変化を、0.1 mg/kg, ip の投与で有意に改善した。対掌体である (R)-24n には、一過性脳虚血 ラットならびに一側線条体破壊ラットにおいて (S)-24n よりも弱い作用しか認められなかっ た。

メタンフェタミン誘発マウス自発運動亢進に対しては、(S)-24n に抑制作用が認められた が (R)-24n には認められなかった。このことは、24n の S 体のみがドーパミン遊離抑制作用 を有することを示している。一方、塩化第一鉄による脊髄損傷モデルであるマウス一塩化第 一鉄一it 法において 24n の両光学活性体は同等の障害改善作用を示したが、脊髄中のドーパ ミン量は非常に少ないことから、24n の障害改善作用は主に抗酸化作用に由来していると考 えられた。ベンゾフランアミン誘導体を用いた今回の検討において、強いドーパミン遊離抑 制作用を有する (S)-24n が脳血管障害モデルおよび頭部外傷モデルにおいてその対掌体より も強い改善作用を示したことから、脳血管障害ならびに頭部外傷の際には、活性酸素種に加 えてドーパミンも重要な障害因子として働いていることが強く示唆された。

第4章 メラトニン受容体作動作用を有するジヒドロベンゾフラン誘導体の合成

ジヒドロベンゾフラン骨格を有するメラトニン受容体作動薬の研究方針については、第1 章第7節で述べた。本章では初めに、ジヒドロベンゾフラン骨格を持たない化合物として、 ベンゼン環にシクロアルカン環が縮合した二環性ベンゾシクロアルケン誘導体の合成を第1 節で述べる。続いて、二環性ベンゾシクロアルケン誘導体にフラン環を縮合した三環性ベン ゾシクロアルケン(インデノフラン)誘導体、およびその類縁体の合成を第2節で述べる。 また第3節では、これらベンゾシクロアルケン誘導体の光学活性体の合成を検討した。

第1節 二環性ベンゾシクロアルケン誘導体の合成⁷⁴⁾

ベンゾシクロアルケン骨格の1位側鎖としてアミドエチル基を有する化合物の一般的合成 法を Scheme 15 に示す。ケトン体 55 をシアノメチルホスホン酸ジエチルと縮合させる Horner-Emmons 反応を用いて (Method A)、あるいはアセトニトリルと Aldol 反応で縮合さ せた後脱水して (Method B) シアノ体 56 に導いた (Method については実験の部を参照)。 化合物 56 は必要に応じて二重結合の E_{XZ} 異性体を分離した。この 56 を Raney-nickel 触媒

Scheme 15⁴ 〔化合物の詳細は Table 7 (pp 61-62) を参照〕

^a (a) $(C_2H_5O)_2P(O)CH_2CN$, NaH (Method A) or CH₃CN, LiN(TMS)₂ and then *p*-TsOH/toluene (Method B); (b) H₂/Raney-nickel, NH₃/C₂H₅OH (Method C); (c) H₂/Raney-cobalt, NH₃/C₂H₅OH (Method D); (d) HCl/C₂H₅OH (Method E); (e) R'CO-X, (C₂H₅)₃N (Method F); or R'CO-X, aqueous NaOH (Method G); (f) H₂/Pd-C (Method H).

下で水素添加して、シアノ基と二重結合が一挙に還元されたアミノエチル体 57 を合成した (Method C)。一方 Raney-cobalt ⁷⁵⁾ を触媒に用いて水素添加すると、シアノ基のみが選択的に 還元されたアミノオレフィン体 58 が得られた (Method D)。その際、58 の exo 型二重結合部 分の立体配置 (*E*, *Z*) はシアノ体 56 の立体配置を保持しており、二重結合の異性化はほとん ど認められなかった。さらに Pd-C を触媒に用いて 58 を水素添加することにより、アミノエ チル体 57 を合成した (Method H)。アミノオレフィン体 58 を原料に用いて塩化水素/エタ ノール溶液中で二重結合の異性化を行い、endo 型二重結合を有する 59 を得た (Method E)。 このようにして得られたアミノ体 57、58 および 59 をトリエチルアミンの存在下 (Method F) あるいは Schotten-Baumann 条件下 (Method G) でアシル化することにより、それぞれ対 応するアミド体 60、61 および 62 に導いた。また 61 あるいは 62 の二重結合を水素添加する ことにより、化合物 60 を合成した (Method H)。

シクロアルケン環とアミド基とのスペーサーがメチレン基であるアミドメチル体 65、あ るいはスペーサーがプロピレン基であるアミドプロピル体 71 は、Scheme 16 に従って合成 した。6-メトキシ-1-インダノン (55c) をトリメチルシリルシアニドを用いてシアノ化し、次 いで得られたシアノヒドリン体を酸性条件下で脱水することにより 63 を得た。⁷⁶⁾ 化合物 63 のシアノ基のみを Raney-cobalt 触媒を用いて水素添加した後、得られたアミノ体 64 をアシ ル化および二重結合の水素添加を行うことにより 65 を得た。また、アミドプロピル側鎖を 有する 71 の合成は、次のようにして行った。初めにインダノン誘導体 55c の Horner-Emmons 反応、続く二重結合の水素添加により 66 に導き、この 66 のエステル基を LiAlH₄ 還元、臭素化、さらにシアノ化を経てシアノエチル体 69 に導いた。次いで 69 の Raneynickel 還元、続くアシル化により 71 を得た。

アルコキシ部分の変換は Scheme 17 に従って行った。初めに Scheme 15 で得られた 60d の メチルエーテル部分を三臭化ホウ素により切断して、フェノール誘導体 72 を得た。さらに 72 の水酸基をアルキルハライドおよび炭酸カリウムを用いてアルキル化し、目的とする 73a-c を合成した。

^{*a*} (a) TMSCN, ZnI₂; (b) CF₃COOH/toluene; (c) H₂/Raney-cobalt, NH₃/C₂H₅OH; (d) (CF₃CO)₂O, (C₂H₅)₃N; (e) H₂/Pd-C; (f) (C₂H₅O)₂P(O)CH₂COOC₂H₅, NaH then H₂/Pd-C; (g) LiAlH₄; (h) PBr₃; (i) NaCN; (j) H₂/Raney-nickel, NH₃/C₂H₅OH.

^a (a) BBr₃; (b) R-X, K₂CO₃.

第2節 インデノフランおよびその類縁体の合成 77)

三環性ベンゾシクロアルケン誘導体として、初めにフラン環が縮合したインデノフラン誘 導体の合成を行った。

フラン環がインダン環にリニアに縮合したインデノ[5,6-*b*]フラン誘導体 80a-c は Scheme 18 に従って合成した。アルデヒド体 74 を Knoevenagel 反応によりケイ皮酸誘導体 75 に変換 した後に 75 の二重結合を Pd-C を触媒に用いて水素添加して、プロピオン酸誘導体 76 を得 た。化合物 76 を酸クロリドに変換した後 Friedel-Clafts 条件下で閉環し、インデノ[5,6-*b*]フ ラン誘導体 77 に導いた。本反応の位置選択性は高く、ベンゾフラン環の 4 位で閉環したイ ンデノ[5,4-*b*]フラン誘導体はほとんど得られなかった。得られたケトン体 77 を Horner-Emmons 反応によりシアノメチレン体 78 に導き、さらに Raney-nickel 還元の後に Schotten-Baumann 条件下でアシル化して目的物 80a-c を得た。

次に、フラン環がアンギュラーに縮合したインデノ[5,4-b]フラン誘導体の合成を行った (Scheme 19)。インデノ[5,6-b]フラン誘導体 77 の合成の際に示したように、ジヒドロベンゾ フラン環は4位よりも6位の方が反応性が高い。ジヒドロベンゾフラン環の4位で閉環した インデノ[5,4-b]フラン誘導体を効率よく得るために、より反応性の高い6位を保護すること を計画した。その保護基としては導入および除去が容易な臭素原子を選択し、合成を進めた。

合成法を Scheme 19 に示す。先と同様にアルデヒド体 74 を原料として、Horner-Emmons 反応、得られた 81 の二重結合の水素添加によりプロピオン酸エステル誘導体 82 を得た。続 いて、化合物 82 を酢酸ナトリウムの存在下で臭素化することにより、ジヒドロベンゾフラ ン環の最も活性な 7 位が臭素化された 83 を合成した。さらにモノブロモ体 83 を触媒量の鉄 の存在下、酢酸中臭素で処理し、4 位よりも反応性の高い 6 位が優先的に臭素化されたジブ ロモ体 84 に導いた。化合物 84 のエステル部分をアルカリ加水分解した後に酸クロリドとし、 さらに Friedel-Crafts 条件下で閉環反応に付すと、目的とするアンギュラーに縮環したイン デノ[5,4-*b*]フラン誘導体 86 が得られた。さらに、86 の 2 つの臭素原子を Pd-C を触媒に用い た加水素分解で除去した後に、シアノメチルホスホン酸ジエチルを用いた Horner-Emmons 反応により 88 に導いた。最後に 88 のシアノメチレン部分を Raney-nickel 還元した後にアシ ル化し 90a-c を得た。

インデノ[5,4-b]フラン環の2位に2つのメチル基を有する96は、Scheme 20に従って合成

Scheme 18^a

^{*a*} (a) malonic acid, piperidine/pyridine; (b) H_2/Pd -C; (c) SOCl₂; (d) AlCl₃; (e) (C₂H₅O)₂P(O)CH₂CN, NaH; (f) $H_2/Raney$ -nickel, NH₃/C₂H₅OH; (g) Ac₂O or RCOCl, NaOH.

Scheme 19^a

^a (a) $(C_2H_5O)_2P(O)CH_2COOC_2H_5$, NaH; (b) H₂/Pd-C; (c) Br₂, NaOAc/AcOH; (d) Br₂, Fe/AcOH; (e) aq. KOH; (f) HCl; (g) SOCl₂; (h) AlCl₃; (i) H₂/Pd-C; (j) $(C_2H_5O)_2P(O)CH_2CN$, NaH; (k) H₂/Raney-nickel, NH₃/C₂H₅OH; (l) Ac₂O or RCOCl, NaOH.

Scheme 20^a

^a (a) Br₂, NaOAc; (b) BBr₃; (c) 3-chloro-2-methyl-1-propene, NaH; (d) N,N-diethylaniline, 200 °C; (e) BF₃•O(C₂H₅)₂; (f) H₂/Pd-C.

した。初めに、Scheme 15 で得られたインダン誘導体 60d を臭素化し、反応性の高いインダン骨格の 5 位を保護した。ブロモ体 91 のメチルエーテル部分を三臭化ホウ素で開裂した後にメタリル化し、93 に導いた。得られたメタリルエーテル体 93 を Claisen 転位反応に付し 94 とした。さらに 94 を三フッ化ホウ素ジエチルエーテル錯体で閉環した後臭素原子を除去し、目的物 96 を合成した。

1,3-ジオキソール体 99 および 1,4-ジオキサン体 100 は、Scheme 15 で得られたジメトキシ インダン誘導体 57f を原料に用いて合成した (Scheme 21)。化合物 57f をプロピオニル化し た後に三臭化ホウ素で処理し、ジオール体 98 を得た。この 98 をジヨードメタンにより閉環 し、99 に導いた。また 98 を 1,2-ジブロモエタンで閉環して、100 を合成した。

オキサゾール環を有する化合物 107 は、Scheme 22 に従って合成した。初めにインダノン 誘導体 55c をニトロ化し、7-ニトロ体 101 を得た。化合物 101 を Horner-Emmons 反応により シアノメチレン体 102 に導いた後に Pd-C を触媒に用いてニトロ基のみを還元し、7-アミノ 体 103 を合成した。さらに 103 を Raney-nickel 還元した後に側鎖のアミノ基のみをプロピオ ニル化して、105 に導いた。最後に三臭化ホウ素による脱メチル化、およびオルトギ酸メチ ルを用いた閉環反応を経てオキサゾール環を有する 107 を合成した。

ピラン環がアンギュラーに縮合した 110 は Scheme 23 に従って合成した。Scheme 20 で得られたフェノール誘導体 92 をプロパルギル化し、108 を得た。この 108 のブロモベンゼン 溶液を封管中、200 ℃ で処理すると、Claisen 転位反応の後に閉環反応が一挙に進行して 109 が得られた。さらに Pd-C を触媒に用いて水素添加し、目的物 110 に導いた。

オキサジン環を有する 119 および 120 は Scheme 24 に従って合成した。初めに 6-ヒドロキ シ-1-インダノン (111) をニトロ化し、7-ニトロ体 112 に導いた。得られた 112 を酢酸エス テル誘導体 113 に導いた後に Pd-C を触媒に用いて 113 のニトロ基を還元し、さらに塩基性 条件下でオキサジン環に閉環した。ケトン体 115 から常法により得られた 117 のアミド部分 を水素化リチウムアルミニウム還元した後にジアミン体 118 の 1 級アミンのみをプロピオニ ル化し、119 を得た。またアミノ体 117 をプロピオニル化して、ジアミド体 120 に導いた。

Scheme 21^a

^a (a) C₂H₅COCl, (C₂H₅)₃N; (b) BBr₃; (c) CH₂I₂, NaH, HMPA; (d) Br(CH₂)₂Br, CuO, K₂CO₃.

Scheme 22^a

^a (a) KNO₃, H_2SO_4 ; (b) $(C_2H_5O)_2P(O)CH_2CN$, NaH; (c) $H_2/Pd-C$; (d) $H_2/Raney-nickel$, NH_3/C_2H_5OH ; (e) C_2H_5COOH , WSC, HOBt; (f) BBr₃; (g) CH(OCH₃)₃, HCl/CH₃OH.

^a (a) propargyl bromide, NaH; (b) bromobenzene, 200 °C, in a sealed tube; (c) H₂/Pd-C.

Scheme 24^a

^{*a*} (a) KNO₃, c.H₂SO₄; (b) NaH, BrCH₂COOC₂H₅; (c) H₂/Pd-C; (d) t-C₄H₉OK; (e) (C₂H₅O)₂P(O)CH₂CN, NaH; (f) H₂/Raney-nickel, NH₃/C₂H₅OH; (g) LiAlH₄; (h) C₂H₅COOH, WSC, HOBt.

第3節 光学活性体の合成

リガンド分子の立体配置の違いが、受容体との親和性ならびに受容体サブタイプ間の選択 性に大きな影響を及ぼしている例は枚挙に遑がない。第1章第7節で述べたように、本研究 では MT₁ 受容体に対して高い親和性および選択性を示す作動薬を得るために、ベンゾシク ロアルケン誘導体の側鎖の方向性を変化させることを計画した。第1節および第2節では、 ベンゾシクロアルケン環の1位に exo 型二重結合を有する化合物および endo 型二重結合を 有する化合物の合成を行い、同時にその二重結合を還元することでラセミ体を得た。本節で は、キラルなベンゾシクロアルケン誘導体の合成について述べる。

第1項 光学分割による合成

ラセミ体について、キラルカラムを用いた HPLC により光学分割を行った。

インダン誘導体 60c をキラルカラム (Ceramospher RU-1) を用いた HPLC により光学分割 して、(S)-60c および (R)-60c を得た。得られた光学活性体それぞれについて、ヒドラジンを 用いてアミド結合を切断してキラルアミン 57c に導いた後にアシル化し、プロピオンアミド 体 60d、ブチルアミド体 60e およびトリフルオロアセトアミド体 60h の光学活性体を合成し た (Scheme 25 は S 体のみを示す)。なお、これらのキラルなインダン誘導体の絶対構造は、 アミノエチル体 (S)-57c から導いた *p*-ブロモベンズアミド体 (S)-60o の X 線結晶構造解析に より決定した (Figure 12)。

また、インデノ[5,4-*b*]フラン誘導体 90b もインダン誘導体 60c と同様に Ceramospher RU-1 を用いた HPLC により光学分割して、(S)-90b および (R)-90b を得た。キラルな 90b の絶対 構造は、次項で述べる不斉合成による情報から決定した。

Figure 12. A stereoscopic molecular view of (S)-600 as determined by X-ray crystallographic analysis.

第2項 不斉合成による (S)-60d および (S)-90b の合成

先に示したような光学分割法では目的とする一方の光学活性体の収率が最高でも 50% に 留まるのに対して、不斉合成法は理論上 100% の収率で光学活性体が得られるという魅力が ある。大量スケールでの合成にも対応可能な方法を確立することを目的に不斉水素化反応に よる光学活性ベンゾシクロアルケン誘導体の合成を計画し、数多く知られている不斉水素化 触媒の中から *L*メントールの工業化で実績のある 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP)⁷⁸⁾ のルテニウム錯体を触媒に選択した。

不斉水素化反応においては、二重結合の近傍に触媒の配位可能な官能基(エステル基、カ ルボキシル基、アミノ基、アミド基など)が必要であるが、アミド基に関しては、アミド基 が二重結合に直結した基質の例しか報告されていない。⁷⁹⁾ 不斉水素化反応の際に、メラトニ ン受容体作動薬としての重要なファーマコフォアであるアミド基を利用できれば効率的なこ とから、アミド側鎖の方向性を変化させる目的で合成したアミドオレフィン体を用いて不斉 水素化反応の検討を行った。

基質であるアミドオレフィン体に対して 10 mol% のルテニウム—(S)-BINAP 錯体を用い て水素 9.1 MPa下、50 °C ° 6 時間反応させ、生成物を HPLC で分析した。その結果を Table 6 に示す。基質として E 型の exo オレフィン体 (E)-61a を用いた場合は生成した飽和体 60d の 1 位の立体は S 配置となり、光学活性体余剰率 95%、化学収率 98% と良好な結果が得ら れた。一方 Z 型の exo オレフィン体 (Z)-61a を基質に用いると、(E)-61a の場合とは異なり R 配置を有する (*R*)-60d が 80% ee で得られ、これらの exo オレフィン体 61a は光学活性イン ダン誘導体の有用な合成原料になることが明らかとなった。野依らは、α-(アシルアミノ)ア クリル酸エステルのロジウム—BINAP 錯体を触媒に用いた不斉水素化反応において、二重 結合の立体配置により得られる還元体の絶対配置が異なることを報告している。⁷⁸⁾ 今回検討 した exo オレフィン体 61a の不斉水素化反応も、野依らの結果と同様の立体特異性を示した。

インデン誘導体 62 の不斉水素化反応は exo オレフィン体 61a と比較して光学収率が大き く低下し、endo オレフィン体は不斉水素化の基質としては適していないことが明らかと なった。

次に、良好な結果が得られた (E)-61a の不斉水素化反応を利用して、フラン環とインダン 環がアンギュラーに縮合したキラルなインデノ[5,4-b]フラン誘導体 (S)-90b の合成を行った (Scheme 26)。化合物 (E)-61a をメタノール中 70 °C、水素 9.1 MPa 下、Ru(OAc)₂[(S)-binap] を触媒に用いて水素添加すると、99% ee の (S)-60d が 83%の高い単離収率で得られた。続 いて (S)-60d の活性な 5 位を臭素原子で保護した後、7 位への置換基導入として (S)-91 ある いはその類縁体を用いて Friedel-Crafts 反応 (分子内、分子間)、Fries 転位反応、ニトロ化、 ホルミル化 (Vilsmeier 法、Duff 法、ジクロロメチルメチルエーテル法) などを検討した。 しかしながら、インダン環 7 位の反応性が低いためにいずれも目的物は得られず、フェノー ル誘導体 (S)-92 を O-アリル化した (S)-121 の Claisen 転位反応のみが 7 位置換体を与えるこ とが明らかとなった。

得られた (S)-122 の二重結合をオゾン分解した後に (S)-123 の臭素原子を加水素分解し、 (S)-124 に導いた。最後にジオール体 (S)-124 のアルコール性水酸基のみをメタンスルホニル 化した後に分子内閉環し、目的とするインデノ[5,4-*b*]フラン誘導体 (S)-90b を得た。本法で 合成した (S)-90b はキラルカラムを用いた HPLC 分析で 99% ee 以上の高い光学純度を示し、 (S)-60d から (S)-90b への変換工程でラセミ化はほとんど進行していないことが明らかとなっ た。また、*p*-ブロモベンズアミド体 (S)-60o の X 線結晶構造解析により絶対配置が明らかに なっている (S)-60b と関連付けることで、本法により得られたインデノ[5,4-*b*]フラン誘導体 90b も S 体であることが確認された。

本章で合成した二環性ベンゾシクロアルケン誘導体 **60-62** を Table 7 (pp 61-62) に、また 三環性インダン誘導体を Table 8 (p 65) に記す。 Table 6. Asymmetric Hydrogenation of Olefins (E)-61a, (Z)-61a and 62a using (S)-BINAP as a Chiral Auxiliary

Scheme 26^a .CH₃ b RO e CH₃C CH₃O Br (S)-91 R= CH₃ (S)-92 R= H (S)-60d (E)-61a (S)-121 R= CH₂CH=CH₂ .CH₃ HO HO HC B (S)-123 R= Br (S)-124 R= H (S)-122 (S)-90b 9

^a (a) $H_2/Ru(OAc)_2[(S)-binap]$; (b) Br_2 , NaOAc; (c) BBr_3 ; (d) allyl bromide, NaH; (e) N,N-diethylaniline, 200 °C; (f) O₃ then NaBH₄; (g) $H_2/Pd-C$, $(C_2H_5)_3N$; (h) MsCl, pyridine then $(C_2H_5)_3N/C_2H_5OAc$.

第4章では、メラトニン受容体作動薬を目的としてベンゾシクロアルケン誘導体の合成を 行った。

メラトニン受容体と結合する際のファーマコフォアとして重要なアミド基の空間配置について検討するために、ベンゾシクロアルケン環1位側鎖の方向性を変化させた exo 型、endo 型オレフィン体、ならびに二重結合を還元した飽和体を合成した。Exo 型二重結合を有する 化合物を合成するために α,β-不飽和ニトリル基の選択的 1,2-還元を検討した結果、Raneycobalt が目的に適した有用性の高い水素化触媒であることを見いだした。その際二重結合の 異性化は認められず、得られたアリルアミン体 58 はシアノオレフィン体 56 の立体配置を完 全に保持していた。また、endo 二重結合を有する化合物は exo 型オレフィン体の酸を用いた 異性化により合成した。

二重結合を還元した飽和体について、その光学活性体の不斉合成法を検討した。二重結合 に直結していないアミド基が配位官能基として働く不斉水素化反応はほとんど知られていな いが、不斉水素化触媒を工業化の実績がある Ru(OAc)₂[(S)-binap] に固定して基質をスク リーニングした結果、Raney-cobalt 還元で得られる *exo* 型オレフィン体 61a が高い光学収率 ならびに化学収率でキラルなインダン誘導体 60d に導かれることが明らかとなった。その際 の立体選択性は 61a の二重結合の立体配置に依存しており、*E* 型のオレフィン体 (*E*)-61a か らは *S* 体である (*S*)-60d が、また (*Z*)-61a からは (*R*)-60d が得られた。今回確立したインダ ン誘導体の Raney-cobalt 還元および不斉水素化反応は kg スケールでも実施可能であり、工 業化の観点からも有用な方法である。

続いて、もう1つの重要なファーマコフォアであるアルコキシ基の立体配座について検討 するために、種々の三環性ベンゾシクロアルケン誘導体を合成した。ジヒドロベンゾフラン 類縁体であるインデノ[5,4-b]フラン誘導体については特に、不斉水素化反応で得られた (S)-60d からキラルな (S)-90b への変換を検討した。インダン骨格 7 位への置換基導入は 7 位の 反応性が低く困難であったが、アリルエーテル体 (S)-121 の Claisen 転位反応を利用するこ とにより 7 位にアリル基が導入された (S)-122 が得られることが明らかとなり、(S)-90b の不 斉合成を達成することができた。

第5章 メラトニン受容体作動作用ならびに in vivo 薬理作用^{74),77)}

第1節 薬効評価試験

本章では、第4章で合成したベンゾシクロアルケン誘導体の生物活性について述べる。第 2節では二環性ベンゾシクロアルケン誘導体、第3節では三環性ベンゾシクロアルケン誘導 体のメラトニン受容体に対する結合作用を調べた。メラトニン受容体のサブタイプのなかで ヒト MT₁ 受容体に対する結合作用は、Chinese hamster ovary (CHO) 細胞に発現させたヒト メラトニン受容体を用いて、2-[¹²⁵]-iodomelatonin 結合に対する 50% 阻害濃度(IC₅₀値)か ら算出した Ki 値として示した。本評価系でのヒト MT₁ 受容体に対するメラトニンの Ki 値 は、0.0823 nM であった。睡眠誘発に関与していない *MT₃* 受容体に対する結合作用は、ハ ムスター全脳のホモジネートを用いて 2-[¹²⁵]-iodomelatonin の結合に対する IC₅₀値から Ki 値 を算出した。本評価系でのメラトニンの Ki 値は 27.6 nM であった。これらの評価結果を Table 7 および Table 8 に示す。

選出した化合物についてフォルスコリン誘発 cAMP 産生亢進に対する抑制作用を指標に、 そのメラトニン受容体作動活性について検討した(第3節第3項)。また第3節第4項では 選出した化合物と MT₁ 受容体モデルとの docking study を行った。

In vivo 試験として、自由行動下のネコに対する睡眠誘発作用を調べた結果を第4節で述べる。また、既存の睡眠薬およびメラトニンとの差別化を図るために、ジアゼパム誘発運動機能障害に対する作用を調べた結果について第5節で述べる。

第2節 二環性化合物のメラトニン受容体作動作用

第1項 アミド基の空間配置に関する検討

メラトニンの側鎖アミド基は、メラトニンが受容体と結合する際の重要なファーマコフォ アと位置付けられている。ベンゾシクロアルケン誘導体においてもアミド基が水素結合受容 体および供与体として機能すると考えられることから、アミド基の空間配置を変化させるた めにシクロアルケン環1位の立体配置の異なる化合物について検討した。

ベンゾシクロアルケン環の1位に exo 型の二重結合を有する化合物について比較してみる と、Z体よりも E 体の方が高い MT₁親和性を示した((E)-61a と (Z)-61a との比較)。これ は、(Z)-61a のアミド基の空間配置が MT₁ 受容体と水素結合しにくい位置に大きくずれたこ とが原因と考えられる。メラトニンと同様に endo 型の二重結合を有する 62a は exo 体 (E)-61a よりも高い MT₁ 親和性を示し、特に 2 位にフェニル基を有する 62c には合成した化合 物の中で最も強い結合活性が認められた。2 位のフェニル基をベンジル基に変換した 62d で は MT₁ 親和性が大きく減弱したが、メラトニンのインドール骨格に関しても同様の構造一 活性相関が報告されている。^{17b}) 強力な MT₁ 親和性を有するこれらの endo 体は MT₃ 受容体 に対してもメラトニンと同等の親和性を示し、MT₁ 受容体に対する選択性の向上は認めら れなかった。

次に、シクロアルケン環の二重結合を還元した飽和体について検討した。2 位が無置換の endo 体 62a、62c に対応する飽和体 60d、60h は endo 体と同等の MT₁ 親和性を示したが、2-フェニルインデン誘導体 62c を還元した 60m の MT₁ 親和性は大きく減弱した。化合物 62c の還元でフェニル基の立体配座が変化し、60m の受容体への接近が著しく阻害された結果と 考えられる。

飽和体の MT_1 親和性を光学異性体間で比較してみると、S 体が R 体の 100 倍以上高い活性を有することが明らかとなった(60c-e、60h の両光学活性体間の比較)。一方、 MT_3 受容体に対して S 体は R 体よりも低い親和性を示した。以上の結果から、ベンゾシクロアルケン環の 1 位に S 配置の不斉炭素を導入することにより、 MT_1 親和性および選択性が大きく向上することが明らかとなった。

第2項 メトキシ基の立体配座に関する検討

メラトニンのメトキシ基は、アミド基とともに重要なファーマコフォアの1つと位置付け られている。本項では二環性ベンゾシクロアルケン誘導体のメトキシ基のオルト位に置換基 を導入し、メトキシ基の立体配座について検討を加えた。

インダン骨格の7位にメチル基を有する化合物 60i は、5位にメチル基を有する 60j と比較して MT₁ 親和性が大きく滅弱した。パクテリオロドプシンの結晶構造から構築したメラトニン受容体モデルとメラトニンとの docking study の結果から、メラトニン受容体の TM5 に存在する His195 とメラトニンのメトキシ酸素原子が水素結合をしていることが報告されているが¹⁷⁾、インダン誘導体の場合にも、高い親和性を示すためには 6 位酸素原子が His195 上のプロトンと水素結合することが必要である。メトキシ基のオルト位にメチル基を導入すると、ベンゼン核メチル基とメトキシ酸素原子上のメチル基との立体反発が生じ、メトキシ基の立体配座が制御される。7 位にメチル基を導入した 60i の場合は酸素原子の孤立電子対が His195 との相互作用に不利な方向を示した結果、MT₁ 親和性が低下したと考えられる (Figure 12B)。以上の結果から、アルコキシ基の立体配座を 60j と同様の活性型に制御することが、強力な MT₁ 親和性を発現するため重要であることが示唆された (Figure 12A)。

5 位にメトキシ基を有する 601 に比べて、7 位にメトキシ基を導入した 60k の MT₁ 親和性 が大きく減弱したことも同様の理由によると考えられる。

Figure 12. Schematic models of interaction between indan derivatives and the histidine residue of the MT_1 receptor. Compound 60j (A) exhibited higher affinity than 60i (B).

第3項 その他の構造―活性相関

シクロアルケン環を 7 員環、6 員環、5 員環と変換した化合物を比較してみると、5 員環 であるインダン誘導体 60h が 6 員環であるテトラリン誘導体 60b よりも強い活性を示した。 また 7 員環であるベンゾシクロヘプテン誘導体 60a の MT₁ 親和性は大きく低下したことか ら、シクロアルケン環は 5 員環が適当であることが明らかとなった。

側鎖を変換した化合物では、アミド基の炭素鎖を伸長すると活性は強くなりプロピオンア ミド体 60d、プチルアミド体 60e が高い MT₁ 親和性を示したが、さらに炭素鎖を伸長した バレリルアミド体 60f および分岐した炭素鎖を有するイソプチルアミド体 60g の活性は減弱 した。ハロゲン原子を導入したトリフルオロアセトアミド体 60h は、アセトアミド体 60c と 比較して高い MT₁ 親和性を示した。*Xenopus laevis* dermal malanophore からクローニングさ れたメラトニン受容体から構築したモデルとメラトニンとの docking study では、アミド部 分のアルキル基は Val170 残基および Ile194 残基による疎水性ポケットの近傍に位置してい ることが示されている。^{17e)} また、このポケットの大きさはアセトアミド基では若干の余裕 が残されていることが示唆されており、アセトアミド基のプロピオンアミド基およびブチル アミド基への変換が、受容体の脂溶性残基との親和性の向上に寄与したことが予想される。 これと同様に、さらに長い炭素鎖を有する 60f、炭素鎖が分岐した 60g は、側鎖が疎水性ポ ケットに収まることができなかったため活性が減弱したと考えられる。詳細は第5章第3節 第4項で述べるが、これらの知見は GPCR であるウシロドプシンの結晶構造を基に構築し た MT₁ 受容体モデルとの docking study でも確認された。

次に、インダン骨格とアミド基間のスペーサーであるメチレン鎖の長さを変化させた。炭 素鎖が3であるプロピレン誘導体71には炭素鎖が2であるエチレン誘導体60hの1/20の MT₁親和性しか認められず、炭素鎖が1である65の活性は大きく減弱した。従って、メチ レン鎖の長さは2が最も好ましいと判断された。

最後に、ベンゼン環上のアルコキシ基の変換を行った。メトキシ基をエトキシ基に変換す ると MT₁ 親和性は若干低下し (60d と 73a との比較)、アルキル基の伸長 (73b) および分岐 (73c) はさらに親和性を低下させた。また 6 位にアルコキシ基を持たない 60n およびメトキ シ基の代わりに水酸基を有する 72 の親和性は大きく低下したが、この実験結果は、His195 残基と水素結合するために必要な水素受容体を持たないことが理由と考えられる。 Table 7. Method of Preparation, Intermediates and binding affinities of Benzocycloalkene Derivatives

CH₃O∖

(E)-61a, (Z)-61a

CH₃O

0

HN

62a-d

R4

							Method of		Receptor	binding ^d
Compd ^a	\mathbb{R}^1	R ²	R ³	R⁴	n	m	preparation ^b	Intermediates ^c	$MT_1^{e}, Ki (nM)$	MT_3^f , Ki (nM)
melatoni	n								0.0823 ± 0.0021	27.6 ± 0.3
60a	CH ₃ O	Н	Н	CF ₃	3	1	A, D, F, H	55a, 56a, (E)-58a, (E)-61c	1.65 ± 0.49	>10000
60b	CH ₃ O	Н	Н	CF ₃	2	1	A, D, F, H	55b, 56b, 58b, (E)-61b	0.0469 ± 0.0125	608 ± 372
60c	CH ₃ O	Н	Н	CH ₃	1	1	A, C, G	55c, (E)-56c, 57c	0.131 ± 0.038	316 ± 166
(S)-60c							Р	60c	0.0733 ± 0.0201	4180 ± 118
(<i>R</i>)-60c							Р	60c	10.6 ± 0.5	372 ± 35
60d	CH ₃ O	Н	Н	C_2H_5	1	1	A, C, G	55c, (E)-56c, 57c	0.0728 ± 0.0186	686 ± 202
(S)-60d							Q, G; or R	(S)-60c, (S)-57c; or (E)-61a	0.0410 ± 0.0102	3570 ± 760
(R)- 60d							Q, G	(R)-60c, (R)-57c	30.1 ± 3.2	561 ± 161
60e	CH ₃ O	Н	Н	$(CH_2)_2CH_3$	1	1	A, C, G	55c, (E)-56c, 57c	0.0553 ± 0.0054	946 ± 301
(S)-60e							Q, G	(S)-60c, (S)-57c	0.0321 ± 0.0064	2230 ± 248
(R)- 60e							Q, G	(<i>R</i>)- 60c , (<i>R</i>)- 57c	43.7 ± 10.3	785 ± 207
60f	CH ₃ O	Н	Н	(CH ₂) ₃ CH ₃	1	1	A, C, F	55c, (E)-56c, 57c	1.32 ± 0.32	837 ± 489
60g	CH ₃ O	Н	Н	CH(CH ₃) ₂	1	1	A, C, G	55c, (E)-56c, 57c	0.250 ± 0.041	2270 ± 813
60h	CH ₃ O	Н	Н	CF ₃	1	1	A, C, F	55c, (E)-56c, 57c	0.0225 ± 0.0059	497 ± 205
(S)- 60h							Q, F	(S)-60c, (S)-57c	0.0123 ± 0.0033	1550 ± 387
(R)- 60h							Q, F	(R)- 60c, (R)- 57c	6.43 ± 0.34	374 ± 83

Table 7	(Continued)									
60i	CH ₃ O	7-CH ₃	Н	CF ₃	1	1	A, D, F, H	55d, (E)-56d, (E)-58d, (E)-61d	28.5 ± 1.9	2600 ± 687
60j	CH ₃ O	5-CH ₃	Н	CF ₃	1	1	A, D, F, H	55e, (E)-56e, (E)-58e, (E)-61e	0.0984 ± 0.0096	4580 ± 1480
60k	CH ₃ O	7-CH ₃ O	Н	CH ₃	1	1	A, D, H, G	55f, (E)-56f, (E)-58f, 57f	46.7 ± 9.3	3150 ± 1050
601	CH ₃ O	5-CH ₃ O	Н	CH ₃	1	1	A, C, F	55g, 56g, 57g	4.09 ± 0.79	782 ± 237
60m	CH ₃ O	Н	C_6H_5	CF ₃	1	1	Н	62c	1.60 ± 0.18	1770 ± 442
60n	н	Н	Н	CF ₃	1	1	A, D, F, H	55h, 56h, (E)-58h, (E)-61h	12.3 ± 3.4	>10000
(S)- 60o	CH ₃ O	Н	Н	C ₆ H ₄ -4-Br	1	1	Q, G	(S)-60c, (S)-57c	NT	NT
(E)- 61a	_	-	-	C_2H_5	-	-	A, D, F	55c, (E)-56c, (E)-58c	0.208 ± 0.021	1190 ± 439
(Z)-61a	-	-	-	C_2H_5	-	_	A, D, F	55c, (Z)-56c, (Z)-58c	0.927 ± 0.336	467 ± 128
62a	-	-	Н	C_2H_5	-	-	A, D, E, F	55c, (E)-56c, (E)-58c, 59c	0.0231 ± 0.0041	48.6 ± 8.7
62b	-	-	Н	CF ₃	-	_	A, D, E, F	55c, (E)-56c, (E)-58c, 59c	0.0408 ± 0.0098	9.09 ± 2.90
62c		-	C_6H_5	CF ₃	_	-	B, D, F	55i, (E)-56i, 59i	0.00602 ± 0.00052	48.0 ± 17.7
62d		-	$CH_2C_6H_5$	CF ₃	-	-	B, D, E, F	55j, 56j, 58j, 59j	6.84 ± 1.80	2450 ± 948
65	CH ₃ O	Н	Н	CF ₃	1	0	I, D, F, H	55c, 63, 64	28.6 ± 8.0	428 ± 125
71	CH ₃ O	Н	Н	CF ₃	1	2	J, K, L, M, C, F	55c, 66, 67, 68, 69, 70	0.526 ± 0.136	353 ± 147
72	НО	Н	Н	C_2H_5	1	1	Ν	60d	23.8 ± 3.4	1810 ± 54
73a	C ₂ H ₅ O	н	Н	C_2H_5	1	1	0	72	0.100 ± 0.029	760 ± 238
73b	CH ₃ (CH ₂) ₂ O	Н	Н	C_2H_5	1	1	0	72	0.425 ± 0.066	812 ± 121
73c	(CH ₃) ₂ CHO	Н	Н	C ₂ H ₅	1	1	0	72	1.45 ± 0.23	5490 ± 1390

^a All the target compounds listed in Table 7 were analyzed correctly ($\pm 0.4\%$) for C, H, and N. ^b A combination of methods. ^c The chemical names of intermediates are given in the Experimental Section. ^d The Ki values were calculated from IC₅₀ values. IC₅₀ values were obtained from the molar concentration of test compound required to inhibit by 50% the 2-[¹²⁵I]-iodomelatonin-specific binding and were calculated by log-probit analysis. ^c Human melatonin receptor expressed in Chinese hamster ovary (CHO) cells. ^fSyrian hamster brain and peripheral organs.

第3節 三環性化合物のメラトニン受容体作動作用

二環性ベンゾシクロアルケン誘導体に関して前節では、側鎖アミド基の空間配置を変化さ せるために、シクロアルケン環 1 位に *exo* 型二重結合 (*E* 体、*Z* 体)、*endo* 型二重結合、お よび不斉中心 (*S* 体、*R* 体)の導入を検討した。その中で、1 位が *S* 配置である化合物が高 い MT_1 親和性を示し、同時に睡眠には関与していない MT_3 受容体に対してほとんど親和性 を示さなかったことから、*S* 配置の導入は高い MT_1 選択性に繋がることが明らかとなった。

また前節では、メトキシ基のオルト位へ置換基を導入することにより、受容体との相互作 用に有利なアルコキシ基の立体配座について検討した。その結果、メトキシ上のメチル基の 立体配座がインダン環7位の方向を示す場合、すなわち酸素原子の孤立電子対が5位の方向 を示した場合に高い MT₁ 親和性が認められた。本節では、この実験結果を基にアルコキシ 基の立体配座を縮合環を形成することで固定した三環性ベンゾシクロアルケン誘導体につい て検討を行った。

MT₁ 受容体および MT₃ 受容体に対する結合作用を Table 8 に示す。

第1項 インデノフラン誘導体の検討

メトキシインダン誘導体 60d のメトキシ基を縮合フラン環に変換することで、メトキシ基 の立体配座を固定した。その結果、フラン環をアンギュラーに縮合させたインデノ[5,4-*b*]フ ラン誘導体 90a-c は、リニアに縮合させたインデノ[5,6-*b*]フラン誘導体 80a-c よりも 1000 倍 以上高い MT₁ 親和性を示した。アルキル基の立体配座をインダン環の 7 位の方向に固定し たインデノ[5,4-*b*]フラン誘導体 90a-c が強い活性を示し (Figure 13A)、インダン環の 5 位の 方向に固定した 80a-c の MT₁ 親和性は大きく減弱したことは (Figure 13B)、前節で検討した アルコキシ基の好ましい立体配座の推定を裏付ける結果である。

インデノ[5,4-*b*]フラン誘導体の側鎖アルキル鎖長の比較では、プロピオンアミド体 90b が アセトアミド体 90a、ブチルアミド体 90c よりも高い MT₁ 親和性を示した。化合物 90b の 光学活性体間で比較すると、*S* 配置を有する (*S*)-90b が *R* 配置を有する (*R*)-90b よりも 500 倍高い MT₁ 親和性を示した。*MT₃* 受容体に対しては (*R*)-90b の方が高い親和性を示し、こ れらの結果は二環性ベンゾシクロアルケン誘導体の検討結果と良く一致していた。また、フ ラン環の 2 位にメチル基を導入した 96 の MT₁ 親和性は、無置換体 90b と比較して 1/20 に 低下した。

Figure 13. Schematic models of interaction between tricyclic indan derivatives and the histidine residue of the MT_1 receptor. Compound 90b (A) exhibited higher affinity than 80b (B).

第2項 フラン環の変換

フラン環をアンギュラーに縮合させたインデノ[5,4-b]フラン誘導体の中でプロピオンアミ ド体 90b に高い活性が認められたことから、次にプロピオンアミド体 90b を基にフラン環を 他の複素環(ジオキソール環、ジオキサン環、オキサゾール環、ピラン環、オキサジン環) に変換した化合物について検討した。

フラン環を 1,3-ジオキソール環に変換した 99 はフラン誘導体 90b と比較して若干の親和 性の低下に留まったが、オキサゾール誘導体 107 の MT₁ 親和性は大きく低下した。MT₁ 受 容体の His195 と相互作用する酸素原子の電子密度が変化したことが活性低下の原因と考え られたことから、フラン環 (90b)、1,3-ジオキソール環 (99) およびオキサゾール環 (107) の 酸素原子上の電荷を NMDO-PM₃法を用いて計算した (MOPAC ver 6.00)。フラン環 (90b) お よび 1,3-ジオキソール環 (99) の酸素原子上の電子密度はそれぞれ -0.19 および -0.20 と求 まり、ほぼ同等の活性を示した結合実験の結果と一致していた。一方オキサゾール環 (107) の酸素原子上の電子密度は -0.11 と求まり、107 は酸素原子の電子密度の低下のために His195 と相互作用し難くなったと考えられた。

1,4-ジオキサン環 (100)、ピラン環 (110)、オキサジン環 (119、120) などの 6 員複素環を 縮合させた化合物の MT₁ 親和性は 90b と比較して大きく減弱した。これはアルコキシ基を 6 員環に固定することで、酸素原子の孤立電子対の配座が His195 と相互作用し難くなったこ とが原因と推定される。以上の結果から、MT₁ 受容体に対して高い親和性および選択性を有 する (S)-90b を精査化合物として選出した。

		Rece	ptor binding ^b
Compd ^{<i>a</i>}		MT ₁ ^c , <i>K</i> i (nM)	MT_3^{d} , Ki (nM)
80a		483 ± 131	237 ± 69
80b		255 ± 45	255 ± 101
80c	CTC H	240 ± 35	492 ± 199
90a	of h cH3	0.126 ± 0.035	5960 ± 1330
90b		0.0174 ± 0.0041	1250 ± 191
(S)- 90b	Ŷ	0.0138 ± 0.0006	2600 ± 190
(R)- 90b	_	7.31 ± 2.86	2270 ± 656
90c	O H H CH3	0.0214 ± 0.0050	1070 ± 271
96	H ₃ C CH ₃ O CH ₃ O CH ₃	0.422 ± 0.070	4790 ± 1860
99	of the the test of tes	0.0241 ± 0.0059	5830 ± 1740
100	O H CH3	0.423 ± 0.088	5390 ± 165
107		3.29 ± 0.63	52.8 ± 18.0
110	N H CH3	0.242 ± 0.035	6220 ± 1920
119	NH N CH ₃	15.3 ± 5.10	> 10000
120	O NH NH H CH ₃	326 ± 35	2560 ± 854

Table 8. Binding Affinities of Tricyclic Indan Analogues

^{*a*} All the target compounds listed in Table 8 were analyzed correctly ($\pm 0.4\%$) for C, H, and N. ^{*b*} The Ki values were calculated from IC₅₀ values. IC₅₀ values were obtained from the molar concentration of test compound required to inhibit by 50% the 2-[¹²⁵I]-iodomelatonin-specific binding and were calculated by log-probit analysis. ^{*c*} Human melatonin receptor expressed in Chinese hamster ovary (CHO) cells. ^{*d*} Syrian hamster brain and peripheral organs.

第3項 化合物 (S)-90b のメラトニン受容体作動活性

選出した (*S*)-90b が MT₁ 受容体に対する作動薬か拮抗薬かを検討する目的で、フォルスコ リン刺激による cAMP 濃度上昇に対する抑制作用を検討した (Table 9)。その結果、(*S*)-90b は 1 μM のフォルスコリン刺激による cAMP 濃度の上昇をメラトニンと同様に濃度依存的に 抑制したことから、(*S*)-90b は MT₁ 受容体作動薬であることが明らかとなった。また、(*S*)-90b の cAMP 産生亢進に対する抑制作用はメラトニンよりも強力であった。

Table 9. Effects of (S)-90b on cAMP Production in CHO Cells Expressing the MT₁ Receptor

Compd	cAMP production	affinity	cAMP/affinity
	IC ₅₀ , pM	K _i , pM	
(S)-90b	20.8	13.8	1.51
Melatonin	79.8	82.3	0.97

 IC_{50} values for cAMP production were calculated from the mean data of 2 experiments each done in triplicate. K_i values for binding are the mean of 3 experiments.

第4項 受容体モデルとの結合様式

GPCR の一種であるウシロドプシンの結晶構造が 2000 年に報告された。⁸⁰⁾ それまで汎用 されていたバクテリオロドプシンの結晶構造は、バクテリオロドプシンが GPCR ではないこ とから GPCR の鋳型としては信頼性に欠ける点がある。MT₁ 受容体においてもバクテリオ ロドプシンの構造を基に受容体モデルが報告されていたが、最近になって MT₁ 受容体のキ メラ実験から細胞外領域ループ (ECL) がリガンド結合に寄与するという従来のモデリング では説明できない知見が報告されている。⁸¹⁾ このような背景から、今回、ウシロドプシン結 晶構造を鋳型にして構築した MT₁ 受容体モデルとメラトニンおよび (S)-90b との結合様式を 検討した。

メラトニンと MT₁ 受容体のリガンド結合部位との結合様式を Figure 14 に示す。従来の受 容体モデルではメラトニンのアミド部分のカルボニル基は TM3 の Ser110 と相互作用してい たが、今回構築したモデルでは、キメラ実験から示唆される ECL2 の Tyr175 との相互作用 が観察された。またアミド部分の窒素原子は、ECL2 の Ser182 と水素結合を形成しており、 アミド部分のメチル基は TM6 の Val261 と相互作用しているモデルが得られた。一方、メト キシ基の酸素原子はこれまで報告されていたモデルと同様、TM5 の His195 と水素結合を形 成していた。インドール環の窒素原子は受容体残基との相互作用に関与していないことが示 され、骨格に窒素原子を持たないベンゾシクロアルケン誘導体にも高い MT₁ 親和性が認め られた実験結果と良く一致している。

化合物 (S)-90b との docking study の結果も、ECL2 の Tyr175、Ser182、TM6 の Val261、 TM5 の His195 の関与について、メラトニンの場合と同様の結合様式が得られた (Figure 15)。 一方、メラトニンのアセチル基では相互作用が認められなかった ECL2 の Pro265 が (S)-90b のプロピオニル基とは相互作用を示し、ベンゾシクロアルケン誘導体においてアセチル体よ りもプロピオニル体の方が高い親和性を示す実験データを説明できるモデルとなっていた。 また、フラン環の環状アルキル基が Val192 と相互作用していた。なおデータは示していな いが、フラン環がリニアに縮合した 80b のフラン環酸素原子上の孤立電子対は His195 との 相互作用に不利な方向を示しており、80b の MT₁ 親和性が大きく減弱した結果と一致してい た。

Figure 14. A schematic model for the binding of melatonin with the MT_1 receptor, constructed by comparative modeling techniques from the crystal structure of bovine rhodopsin. Comparative modeling was carried out on a Silicon Graphics O2(C) workstation with the Insight II/Discover program package. The binding mode was analyzed by the program DOCK using standard parameters.

Figure 15. A schematic model for the binding of (S)-90b with the MT₁ receptor, constructed by the same techniques as Figure 14.

第4節 睡眠誘発作用

前節で示したように、インデノ[5,4-b]フラン誘導体 (S)-90b に MT₁ 受容体に対する高い親 和性および選択性が認められた。ここでは、メラトニン受容体作動薬が睡眠に及ぼす影響を 検討した。

自由行動下のネコに (S)-90b あるいはメラトニンを投与した後、脳波、筋電図、眼電図を 8 時間に渡って記録し、同時に行動観察を行った。対照群には 0.5% メチルセルロース溶液 を投与した。実際の脳波記録、周波数解析、筋電位、行動観察を基に各 1 分ごとの動物の睡 眠-覚醒状態を覚醒 (Wakefulness)、徐波睡眠 (slow-wave sleep; SWS) およびレム睡眠 (rapid eye movement; REM) に分類した。1 群 7 匹のネコを用い、クロスオーバー法により各個体で 溶媒投与時と化合物投与時の各ステージの変化を比較した。

メラトニンの1 mg/kg 投与は有意な覚醒時間の短縮、徐波睡眠の延長および REM 睡眠の 増加を示したが (Figure 16)、0.3 mg/kg, po の用量ではいずれにおいても対照群との間に有意 差は認められなかった (データは示していない)。また、覚醒時間の短縮を指標として作用 持続について検討するために、有意差が認められた1 mg/kg 投与群について各時点での群間 の差を検定したところ、メラトニンは投与2時間後の時点でのみ有意な短縮を示した。

化合物 (*S*)-90b は 0.1 mg/kg, po の用量から有意な覚醒時間の短縮、徐波睡眠の延長および REM 睡眠の増加作用を示した (Figure 17 に 0.1 mg/kg, po のデータを示す)。また、(*S*)-90b の 1 mg/kg 投与群は 6 時間後まで有意な覚醒時間の短縮を示した。

以上の結果から、(S)-90b は用量依存的に自由行動下のネコに対する睡眠誘発作用を示し、 その作用強度および持続時間はメラトニンを凌駕していることが明らかとなった。

Figure 16. Effects of melatonin on sleep and wakefulness in freely moving cats. The experiment was based on the cross-over design. Eight cats were treated with melatonin (1 mg/kg, po) or vehicle. Each value shows the mean percentage at each stage during each block of 2 hrs. **p < 0.01, main group effect by ANOVA; ^{##}p < 0.01, as compared with the vehicle control (paired *t*-test with Holm's correction).

Figure 17. Effects of (S)-90b on sleep and wakefulness in freely moving cats. The experiment was based on the cross-over design. Eight cats were treated with (S)-90b (0.1 mg/kg, po) or vehicle. Each value shows the mean percentage at each stage during each block of 2 hrs. *p < 0.05 and **p < 0.01, main group effect by ANOVA; $^{\#}p < 0.01$, as compared with the vehicle control (paired *t*-test with Holm's correction).

第5節 ジアゼパムとの併用に関する検討

ベンゾジアゼピン系睡眠薬はその筋弛緩作用に基づき運動障害を誘発することが知られて おり、そのため特に高齢者への投与は慎重にならざるを得ない。ここでは、MT₁ 選択的作動 薬 (*S*)-90b の運動系に対する影響を調べた。また、運動障害を惹起するベンゾジアゼピン系 睡眠薬であるジアゼパムとの併用効果についても検討した。

運動機能の試験はマウス回転棒課題を用いた。あらかじめ十分に訓練を施したマウスを回 転棒に乗せ、薬物投与により回転棒に持続して1分以上乗れなかったマウスを協調運動障害 有りと判定した。ジアゼパム (DZP) は試験開始 60 分前に、その他の化合物は 30 分前に 経口投与した。

ベンゾジアゼピン系睡眠薬の1つであるジアゼパムは、用量依存的に協調運動障害を誘発 し、最少有効量は 5 mg/kg, po であった (Figure 18A)。一方、(S)-90b、メラトニンおよび *MT*₃ 受容体に対して親和性を有する *N*-アセチルセロトニン (*MT*₃; *K*i=6.5 nM) の単独投与は、 30 mg/kg, po の用量まで運動機能障害を示さなかった (Figure 18B)。

次に、有意な協調運動障害を惹起しないジアゼパム の3 mg/kg, po と、メラトニン受容体 作動薬との併用投与時の影響について検討した。その結果、*MT*₃ 受容体に対して親和性を有 するメラトニン (Figure 18D) および *N*-アセチルセロトニン (Figure 18E) は、ジアゼパムに より誘発される協調運動障害を用量依存的に増悪した。一方、MT₁ 選択的作動薬である (*S*)-90b は 30 mg/kg, po の用量においても有意な増悪作用を示さなかったことから (Figure 18C)、 *MT*₃ 受容体に対して親和性を有する化合物は、ベンゾジアゼピン系睡眠薬の運動機能障害を 増悪させることが示唆された。

以上の結果から、(S)-90b はベンゾジアゼピン系睡眠薬で問題となっている運動障害を惹起しないことが明らかとなり、また、臨床においてベンゾジアゼピン系睡眠薬と併用された場合でも安全性は高いことが示唆された。

Figure 18. Effects of (S)-90b, melatonin and N-acetylserotonin (N-Ac-5-HT) on diazepam-induced impairment of rota-rod performance. Only mice showing rota-rod performance for more than 60 sec were used for the experiment. In the test, each mouse was given 3 consecutive trials, in each trial the mouse was placed on the rotating rod. If the mouse remained on the rod for more than 60 sec in any trial, the mouse was noted as performance positive. Diazepam was administered orally 1 hr before the test. (S)-90b, melatonin or N-Ac-5-HT was given orally 30 min before the test. *p < 0.05, **p < 0.01 (Fisher exact probability test).

第6節 結論

メラトニン MT₁ 受容体に対して高い親和性ならびに選択性を有する化合物を目的に分子 設計、合成したベンゾシクロアルケン誘導体の薬効評価を行った。

初めに、メラトニン受容体と結合する際の重要なファーマコフォアである側鎖アミド基の 空間配置を調節するために、二環性ベンゾシクロアルケン環の1位に endo 型、exo 型 (E、 Z) 二重結合ならびに不斉中心 (S、R) を導入した化合物のメラトニン受容体親和性を検討し た。Exo 型二重結合の幾何異性体間の比較では、E 体に Z 体よりも高い MT₁ 親和性が認めら れた。また、endo オレフィン体は exo オレフィン体よりも高い MT₁ 親和性を示したが、同 時に、睡眠誘発には関与していない MT₃ 受容体にもメラトニンと同等の親和性を示した。

オレフィン体を還元した二環性化合物のラセミ体には、MT₁ 受容体に対してメラトニンと 同程度の親和性および選択性が認められた。光学分割あるいは不斉合成で得られた光学活性 体について活性を比較すると、MT₁ 受容体に対して *S* 体が *R* 体よりも 3 オーダー高い活性 を示した。一方 *MT*₃ 受容体に対しては *S* 体よりも *R* 体の方が高い親和性を示したことから、 ベンゾシクロアルケン誘導体の 1 位に *S* 配置の不斉中心を導入した化合物は、メラトニンよ りも高い MT₁ 親和性および選択性を有することが明らかとなった。

続いて、もう1つの重要なファーマコフォアであるアルコキシ基の立体配座に関して検討 を行った。アルコキシ基のオルト位にメチル基を導入してアルコキシ基の立体配座を制御し た結果、インダン環の5位にメチル基を導入した 60jに 7-メチル体 60iよりも強い MT₁親和 性が認められた。次にアルコキシ基の立体配座をジヒドロベンゾフラン構造を導入して固定 したところ、酸素原子上の孤立電子対が 60j と同様の方向を示すインデノ[5,4-b]フラン誘導 体が強力な MT₁親和性を示した。合成した種々の三環性ベンゾシクロアルケン誘導体の中か ら、S配置を有するインデノ[5,4-b]フラン誘導体 (S)-90b を精査化合物として選出した。

化合物 (S)-90b はフォルスコリン誘発 cAMP 産生亢進をメラトニンよりも低濃度で抑制し、 MT₁ 受容体に対する作動薬であることが確認された。また (S)-90b は、自由行動下のネコに おいてメラトニンよりも低用量で持続的な睡眠誘発作用を示した。

臨床におけるベンゾジアゼピン系薬剤との併用を念頭において、ジアゼパムとの併用時の 作用を調べた。メラトニン、*N*-アセチルセロトニンなどの*MT*₃ 受容体に親和性を有する化 合物はジアゼパムによる運動障害を増悪したが、化合物 (*S*)-90b には増悪作用が認められず、 より安全性が高いことが示唆された。

-73-

第6章 結語

ジヒドロベンゾフラン骨格の電子的および立体的な構造特性を利用して、脳血管障害急性 期/頭部外傷治療薬および睡眠障害治療薬の創製を行った。本研究で得られた知見を以下に まとめる。

<脳血管障害急性期/頭部外傷治療薬>

- (1)ジヒドロベンゾフラン環の電子的特性であるラジカル安定化作用に着目して合成した ベンゾフランアミン誘導体の構造―活性相関を検討した。その結果、強い過酸化脂質 生成抑制作用を発現するためには、5 位の窒素原子の電子密度を高める置換基、なら びに脂溶性の高い置換基が重要であることが明らかとなった。
- (2) 中枢性抗酸化剤の簡便な in vivo 評価系として新たに確立したマウス―塩化第一鉄―it 法を用いて化合物の評価を行い、分子のかさ高さがマウス中枢神経障害改善作用に関 連している知見を得た。
- (3) 強い抗酸化作用を示した 24n について、メタンフェタミン誘発マウス自発運動亢進 に対する抑制作用を指標にドーパミン遊離抑制作用を調べたところ、S 体により強力 な作用が認められた。
- (4) 化合物 24n の両光学活性体について、脳血管障害急性期および頭部外傷の動物モデルにおける薬効を比較した。強いドーパミン遊離抑制作用を示す (S)-24n にいずれのモデルにおいてもより強い活性が認められたことから、これらのモデルにおいてドーパミンの障害因子としての関与が強く示唆された。
- (5) 化合物 (S)-24n の合成法として、キラルなマンデル酸を分割剤に用いた効率的な光学 分割法、ならびにメタリルアルコールの Katsuki–Sharpless 酸化により容易に得られる (R)-2-メチルグリシジルトシラートを合成素子とするキラル合成法を確立した。

本研究は、ジヒドロベンゾフラン誘導体を用いて虚血性/外傷性脳疾患における抗酸化剤 の有用性を示すと共に、ドーパミンもこれら疾患の障害因子であることを実験的に証明した。 最近になって、本研究で見いだされた (S)-24n と類似構造を有する化合物が虚血性疾患治療 薬として報告されている。⁸²⁾ <睡眠障害治療薬>

- (1) ジヒドロベンゾフラン環のリジッドな立体的特性をメラトニン受容体作動薬の立体配 座制御モデルとして利用した。フラン環の縮合形式の異なる化合物の構造一活性相関 から、高い MT₁ 親和性を示すためには、アルコキシ基酸素原子の孤立電子対の方向 性が重要であることが明らかとなった。
- (2) アミド基の空間配置を調節するために、二環性ベンゾシクロアルケン誘導体において endo 型、exo 型 (E、Z) 二重結合、ならびに飽和体について不斉中心 (S、R) の導入 を行い1位の立体配置を変化させた。その結果、1位にS配置を有する化合物が高い MT₁親和性ならびに MT₁/MT₃ 選択性を有することが明らかとなった。
- (3) 選出した (S)-90b は、自由行動下のネコにおいてメラトニンよりも低用量で持続的な 睡眠誘発作用を示した。
- (4) 化合物 (S)-90b はマウス回転棒課題において 30 mg/kg, po の用量まで運動障害を引き 起こさなかった。また MT₃ 受容体に親和性を有するメラトニン、N-アセチルセロト ニンはジアゼパムによる運動障害を増悪したのに対し、MT₃ 受容体に親和性を持たな い (S)-90b には増悪作用が認められなかったことから、ベンゾジアゼピン系睡眠薬に より誘発される運動障害に対する MT₃ 受容体の関与が示唆された。
- (5) 化合物 (S)-90b の不斉合成法を検討した結果、E 型オレフィン体 (E)-60d のルテニウム—BINAP 触媒を利用した不斉水素化が効率良く (S)-90b の光学活性中間体を与えることが明らかとなった。また、(E)-60d は Raney-cobalt を触媒に用いた α,β-不飽和ニトリルの選択的 1,2-還元を経由して得られることを見いだした。

化合物 (S)-90b は MT₂ 受容体に対して 0.045 nM の Ki 値を示し、(S)-90b の睡眠誘発作用 には MT₂ 受容体の関与も示唆されている。⁷⁷⁾ また、(S)-90b は MT₁ および MT₂ 以外の受容 体あるいは酵素に対しては高濃度でも阻害活性を示さず、ラットにおける実験から学習記憶 障害、薬物依存を誘発しないことも確認されている。さらに、ベンゾジアゼピン系睡眠薬で ある zolpidem により誘発される睡眠時のサルの脳波は、14 Hz を超える速波部分の増強が認 められ自然睡眠とは明らかに異なるパターンを示すのに対し、(S)-90b は極めて自然に近い 睡眠を誘発することが明らかとなっている。本研究で見いだした (S)-90b は、既存のメカニ ズムとは異なる新たな睡眠障害治療薬としての可能性が示唆される。

謝辞

本研究の機会を与えられた武田薬品工業株式会社 元取締役製品戦略部長 隅野 靖弘博士、 取締役医薬研究本部長 左右田 隆博士に深謝申し上げます。

本研究は終始、化学研究所 リサーチマネージャー 大川 滋紀博士のご指導のもとに行われたものであり、ここに厚くお礼申し上げます。

本研究を遂行するにあたり、適切なご指導とご鞭撻を賜った元医薬探索センター 主席部 員 青野 哲也博士、化学研究所 主席研究員 内川 治博士に深く感謝いたします。また薬理 試験を担当された元薬事管理部 主席部員 福田 尚久博士、製品戦略部 領域リーダー 宮本 政臣博士、創薬第一研究所 リサーチマネージャー 土居 孝行博士、主席研究員 橋本 忠俊 博士、主席研究員 加藤 浩紀博士、主席研究員 平井 圭介博士、主任研究員 西川 久夫氏、 主任研究員 坂本 順子女史、ビーエフ研究所 永井 康雄博士、メラトニン受容体のクローニ ングを担当された開拓研究所 リサーチマネージャー 日沼 州司博士、X 線結晶構造解析を 担当された医薬探索センター 主席研究員 藤島 聡氏、東川 惠子女史、分子モデリングを担 当された化学研究所 主任研究員 今井 由美女史、分子起動計算を担当された化学研究所 主 任研究員 田中 稔祐氏、HPLC 分析を担当された薬物機能研究所 主任研究員 多田 憲生氏 に深謝いたします。

本研究に対し、有益なご助言とご援助をいただいた製薬研究所 主席研究員 三木 正敬博 士、研究推進部 主席部員 川田 満博士、化学研究所 主席研究員 山野 徹博士、研究推進部 課長代理 藤井 伸寛氏、化学研究所 主任研究員 山下 真之氏、主任研究員 瀬藤 正記氏、 主任研究員 得能 僚資博士、医薬探索センター 主席研究員 樽井 直樹博士に深く感謝いた します。

本論文作成にあたり、適切なご助言とご配慮をいただきました株式会社武田分析研究所 代表取締役社長 仲 建彦博士、化学研究所 所長 三宅 昭夫博士、研究推進部 グループマネ ージャー 伊藤 克巳博士、創薬第一研究所 主席研究員 蘆田 康子博士、化学研究所 主席研 究員 川野 泰彦氏、主席研究員 梶野 正博博士に深謝いたします。

星薬科大学 薬品製造化学教室 教授 本多 利雄博士には、本論文に関しご懇篤なご教示と ご高配を賜りました。ここに厚くお礼申し上げます。

-76-

実験の部

融点は柳本微量融点測定器を用いて測定し、すべて未補正である。赤外吸収 (IR) スペクトル は Shimadzu FTIR-8200PC を用いて測定した。プロトン核磁気共鳴 (¹H NMR) スペクトルは Varian Gemini 200 (200 MHz) を、¹³C NMR は Bruker DRX500 (500 MHz) を用いて測定し、いずれ もテトラメチルシラン (TMS) を内部標準とした。¹H NMR スペクトルの化学シフトは δ 値 (ppm) で表し、括弧内にプロトン数、吸収パターン、カップリング定数 (J 値:Hz) を示した。 略号として s=一重線、d=二重線、t=三重線、q=四重線、m=多重線、br=幅広を用いた。比 旋光度の測定は JASCO DIP-370 digital polarimeter を使用した。EI マススペクトルは JEOL JMS-AX505W、SIMS は Hitachi M-2000 を用いて測定した。元素分析は株式田分析研究所が行った。

Raney-nickel は川研ファインケミカル製 NDHT-90 を、Raney-cobalt は川研ファインケミカル製 ODHT-60 を使用し、蒸留水でおよびエタノールで洗浄したものを反応に用いた。テトラヒドロ フラン (THF) およびジイソプロピルエーテルは、水素化カルシウムで乾燥した後常圧下で蒸留 したものを用い、その他の試薬・溶媒は、市販品をそのまま用いた。シリカゲルカラムクロマト グラフィーには Merck Kieselgel 60 (70-230 mesh)を用い、薄層クロマトグラフィーには Merck Kieselgel 60 F₂₅₄ plates を用いた。実験操作において、抽出液は特記しない限り無水硫酸マグネシ ウムで乾燥し、溶媒は減圧下で留去した。なお、動物実験は「武田実験動物要覧」に従って実施 した。

第2章第1節に関する実験

4-Amino-2,3,5-trimethylphenol (2)。スルファニル酸 (49 g、 0.26 mol)の水 (250 mL)溶液に、 室温で撹拌しながら炭酸ナトリウム (14 g、 0.13 mol)を少しずつ加え、反応液が均一な溶液にな った後に氷冷し、亜硝酸ナトリウム (19 g、 0.28 mol)の水 (50 mL)溶液を内温を 10 ℃ 以下に 保ちながら加えた。次にこの溶液を滴下ロートに入れ、氷冷下で撹拌しながら濃塩酸 (46 mL) と氷 (100 g)の上に約 10分間で滴下した。滴下終了後、氷冷を続けながら反応液を 30分間撹 拌した。次にメカニカルスターラーを備えた別の反応容器に水 (250 mL)、水酸化ナトリウム (57 g、 0.14 mol)および 2,3,5-トリメチルフェノール (1)(35 g、 0.26 mol)を入れ、窒素気流下で撹拌 しながら -10 ℃ から 5 ℃ の範囲で先の反応液を滴下した。滴下終了後、反応液を 50 ℃ に加 温し、ハイドロサルファイトナトリウム (12 g、 68 mmol)を加えた。続いて反応液を 80 ℃ に 加温し、さらにハイドロサルファイトナトリウム (210 g、 1.2 mol)を 5 等分して 5分間隔で加 えた。反応液を同温度で 30分間撹拌した後冷却し、析出した結晶をろ取した。得られた結晶を 水洗し、乾燥した後酢酸エチルージイソプロピルエーテルから再結晶して、2 (33 g、収率 84%) を得た。融点 153-154 ℃。¹H NMR (CDCl₃) & 2.11 (6H, s), 2.16 (3H, s), 3.55 (3H, br s), 6.42 (1H, s)。 N-(4-Hydroxy-2,3,6-trimethylphenyl)formamide (3)。化合物 2 (100 g、0.66 mol) をギ酸 (500 mL) に溶解し、アルゴン雰囲気下で 36 時間加熱還流した。反応液を氷水中に注ぎ、析出した結晶をろ取し、水洗、乾燥した。得られた粗結晶をエタノールから再結晶し、3 (86 g、収率 73%) を得た。融点 219–220 ℃。¹H NMR (DMSO-*d*₆) δ 2.00 (3H, s), 2.03 (6H, s), 6.53 (1H, s), 8.20 (1H, d, *J* = 1.8 Hz), 9.06 (1H, s), 9.15 (1H, br s)。

N-[2,3,6-Trimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]formamide (4)。 化合物 3 (86 g、0.48 mol)、塩化メタリル (45 g、0.50 mol) の *N*,*N*-ジメチルホルムアミド (DMF) (300 mL) 溶液に炭酸 カリウム (74 g、0.54 mol) を加えてアルゴン雰囲気下 80 °C で 3 時間撹拌した。反応液を氷水中 に注ぎ、析出した結晶をろ取し、水洗、乾燥した。得られた粗結晶をジイソプロピルエーテルか ら再結晶して 4 (80 g、収率 72%) を得た。融点 144–145 °C。¹H NMR (CDCl₃) δ 1.84 (3H, m), 2.17 (3H, s), 2.19 (1.5H, s), 2.22 (3H, s), 2.26 (1.5H, s), 4.40 (1H, s), 4.42 (1H, s), 4.99 (1H, m), 5.11 (1H, br s), 6.60 (1H, s), 6.75 (1H, m), 7.98 (0.5H, d, *J* = 12.0 Hz), 8.41 (0.5H, s)。

N-[4-Hydroxy-2,3,6-trimethyl-5-(2-methyl-2-propenyl)phenyl]formamide (5)。化合物 4 (80 g、 0.34 mol) を N,N-ジエチルアニリン (500 mL) に溶かし、200 °C で 3 時間撹拌した。反応液を空 冷し、結晶が析出し始めたらヘキサンを加え、析出した結晶をろ取して 5 (75 g、収率 94%) を得 た。粗結晶は酢酸エチル―ジイソプロピルエーテルから再結晶した。融点 163–164 °C。¹H NMR (CDCl₃) δ 1.80 (3H, s), 2.16 (3H, s), 2.17 (1.5H, s), 2.19 (1.5H, s), 2.20 (1.5H, s), 2.21 (1.5H, s), 3.38 (2H, br s), 4.65 (1H, m), 4.88 (1H, m), 5.16 (0.5H, s), 5.19 (0.5H, s), 6.70 (1H, m), 7.95 (0.5H, d, *J* = 12.0 Hz), 8.42 (0.5H, d, *J* = 1.8 Hz)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-5-benzofuranamine hydrochloride (6)。化合物 5 (7.3 g、36 mmol) をメタノール (100 mL) に溶解し、氷冷下で濃塩酸 (30 mL) を加えた。フラスコ内をアルゴンで置換した後、2 時間加熱還流した。反応液を冷却後炭酸水素ナトリウム水溶液で中和し、クロロホルム抽出した。抽出液を水洗、乾燥後減圧濃縮し、残渣をジイソプロピルエーテルから結晶化させ、6 の遊離塩基 (6.4 g、収率 99%) を得た。一部を4 M 塩化水素エタノール溶液で塩酸塩にした後メタノールから再結晶し、6 を得た。融点 248–250 °C (分解)。¹H NMR (DMSO-*d*₆) δ 1.41 (6H, s), 2.02 (3H, s), 2.20 (6H, s), 3.41 (2H, m), 9.65 (2H, br s)。*Anal.* calcd for C₁₃H₂₀ClNO: C, 64.59; H, 8.34; N, 5.79。Found: C, 64.44; H, 8.15; N, 35.82。

N-(4-Hydroxy-2,6-dimethylphenyl)formamide (7a)。前記 3 の合成と同様の方法を用いて、4amino-3,5-dimethylphenol を原料に用いて 7a を合成した。収率 70%。融点 239–240 ℃ (ジクロロ メタン—ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 2.05 (6H, s), 6.46 (2H, s), 8.19 (1H, s), 9.13 (1H, br s), 9.16 (1H, s)。

N-(4-Hydroxy-2,5-dimethylphenyl)acetamide (7b)。4-Amino-2,5-dimethylphenol (22 g、0.16 mol) のピリジン (150 mL) 溶液を氷冷し、無水酢酸 (38 mL、0.40 mol) を加えた後室温で 1 時間撹拌

した。反応液に水を加え、クロロホルムで抽出した。抽出液を飽和重曹水および飽和食塩水で洗 浄し、無水硫酸マグネシウム乾燥した後減圧下で濃縮した。残渣にイソプロピルエーテルを加 え、析出した結晶をろ取した。減圧下で乾燥し、4-acetylamino-2,5-dimethylphenyl acetate (19 g、 収率 55%) を得た。融点 176–177 ℃。¹H NMR (CDCl₃) δ 2.12 (3H, s), 2.16 (6H, s), 2.30 (3H, s), 6.81 (1H, s), 7.02 (1H, br s), 7.57 (1H, s)。4-Acetylamino-2,5-dimethylphenyl acetate (19 g、 87 mmol) のメタノール-水 (1:1、160 mL) 懸濁液に炭酸カリウム (10 g) を加え、原料が溶解するまで室温 で撹拌した (約 1 時間)。反応液を塩酸で中和した後、減圧下で半量になるまで濃縮した。析出し た結晶をろ取した後水洗、乾燥し、7b (14 g、収率 92%) を得た。融点 182–183 ℃ (ジクロロメ タンージイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.97 (3H, s), 2.04 (6H, s), 6.58 (1H, s), 6.91 (1H, s), 9.03 (2H, s)。

N-(4-Hydroxy-2,3-dimethylphenyl)acetamide (7c)。前記 7b の合成と同様の方法を用いて、4amino-2,3-dimethylphenol から 7c を合成した。収率 40%。融点 184–185 ℃ (ジクロロメタン—ジイ ソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 2.13 (3H, s), 2.16 (3H, s), 2.18 (3H, s), 6.66 (1H, d, *J* = 8.5 Hz), 7.01 (1H, d, *J* = 8.5 Hz), 7.22 (1H, br s), 7.29 (1H, s)。

N-(4-Hydroxyphenyl)acetamide (7d)。前記 7b の合成と同様の方法を用いて、4-aminophenol から 7d を合成した。収率 74%。融点 170–172 °C (酢酸エチル─ジイソプロピルエーテルから再結 晶)。¹H NMR (DMSO-*d*₆) δ 1.98 (3H, s), 6.67 (2H, d, *J* = 8.8 Hz), 7.34 (2H, d, *J* = 8.8 Hz), 9.11 (1H, s), 9.64 (1H, s)。

N-[2,6-Dimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]formamide (8a)。前記 4 の合成と同様の方 法を用いて、7a から 8a を合成した。収率 99%。融点 128–129 ℃ (ジイソプロピルエーテルから 結晶化)。¹H NMR (DMSO-*d*₆) d 1.77 (3H, s), 2.11 (6H, s), 4.43 (2H, s), 4.95 (1H, s), 5.05 (1H, s), 6.68 (2H, s), 8.22 (1H, s), 9.26 (1H, s)。

N-[2,5-Dimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]acetamide (8b)。前記 4 の合成と同様の方 法を用いて、7b から 8b を合成した。収率 84%。融点 128–132 °C (ジクロロメタン—ジイソプロ ピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.60 and 2.17 (3H, s), 1.84 (3H, s), 2.20 (6H, s), 4.40 (2H, s), 4.98 (1H, s), 5.11 (1H, s), 6.63 (1H, s), 6.80 (1H, br s), 7.28 (1H, s)。

N-[2,3-Dimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]acetamide (8c)。前記 4 の合成と同様の方法 を用いて、7c から 8c を合成した。収率 86%。融点 154–156 °C (ジクロロメタン—ジイソプロピ ルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.84 (3H, s), 2.16 (3H, s), 2.19 (3H, s), 2.21 (3H, s), 4.41 (2H, s), 4.98 (1H, s), 5.12 (1H, s), 6.70 (1H, d, *J* = 8.8 Hz), 6.89 (1H, br s), 7.20 (1H, d, *J* = 8.8 Hz)。

N-[4-[(2-Methyl-2-propenyl)oxy]phenyl]acetamide (8d)。前記 4 の合成と同様の方法を用いて、 7d から 8d を合成した。収率 94%。融点 86–87 °C (ジイソプロピルエーテル—ヘキサンから再結 晶)。¹H NMR (CDCl₃) δ 1.82 (3H, s), 2.15 (3H, s), 4.41 (2H, s), 4.98 (1H, br s), 5.08 (1H, br s), 6.87 (2H, d, J = 9.0 Hz), 7.23 (1H, br s), 7.37 (2H, d, J = 9.0 Hz).

N-[4-Hydroxy-2,6-dimethyl-3-(2-methyl-2-propenyl)phenyl]formylamide (9a)。前記 5 の合成と同様の方法を用いて、8a から 9a を合成した。収率 81%。融点 207–209 ℃ (ジイソプロピルエーテルから結晶化)。¹H NMR (DMSO-*d*₆) δ 1.71 (3H, s), 1.97 (3H, s), 2.04 (3H, s), 3.25 (2H, s), 4.33 (1H, s), 4.65 (1H, s), 6.55 (1H, s), 8.19 (1H, s), 9.09 (1H, s)。

N-[4-Hydroxy-2,5-dimethyl-3-(2-methyl-2-propenyl)phenyl]acetamide (9b)。前記 5 の合成と同様 の方法を用いて、8b から 9b を合成した。収率 99%。融点 183–185 ℃ (ジクロロメタン—ジイソ プロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.79 (3H, s), 2.11–2.22 (9H, m), 3.38 (2H, s), 4.60 (1H, s), 4.83 (1H, s), 7.11 (1H, s)。

N-[4-Hydroxy-2,3-dimethyl-5-(2-methyl-2-propenyl)phenyl]acetamide (9c)。前記 5 の合成と同様 の方法を用いて、8c から 9c を合成した。収率 92%。融点 149–151 °C (ジクロロメタン—ジイソ プロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.72 (3H, s), 2.12 (3H, s), 2.16 (3H, s), 2.17 (3H, s), 3.32 (2H, s), 4.89–4.94 (2H, m), 5.39 (1H, s), 6.92 (1H, br s), 7.00 (1H, s)。

N-[4-Hydroxy-3-(2-methyl-2-propenyl)phenyl]acetamide (9d)。前記 5 の合成と同様の方法を用いて、8dから9dを合成した。収率93%。油状。¹H NMR (CDCl₃) & 1.72 (3H, s), 2.13 (3H, s), 3.33 (2H, s), 4.81 (1H, br s), 4.89 (1H, br s), 5.89 (1H, br s), 6.76 (1H, m), 7.20 (2H, m), 7.32 (1H, br s)。

N-(2,3-Dihydro-2,2,4,7-tetramethyl-5-benzofuranyl)acetamide (10b)。前記 6 の合成と同様の方法 を用いて、9b から 10b を合成した。収率 67%。融点 161–162 ℃ (ジイソプロピルエーテルから結 晶化)。¹H NMR (CDCl₃) δ 1.47 (6H, s), 2.06 (3H, s), 2.13 (3H, s), 2.14 (3H, s), 2.93 (2H, s), 6.81 (1H, br s), 6.95 (1H, s)。

N-(2,3-Dihydro-2,2,6,7-tetramethyl-5-benzofuranyl)acetamide (10c)。前記 6 の合成と同様の方法 を用いて、9c から 10c を合成した。収率 72%。融点 163–164 °C (エタノールから再結晶)。¹H NMR (CDCl₃) δ 1.45 (6H, s), 2.10 (3H, s), 2.11 (3H, s), 2.17 (3H, s), 2.98 (2H, s), 7.00 (1H, s), 7.33 (1H, br s)。

2,3-Dihydro-2,2,4,6-tetramethyl-5-benzofuranamine hydrochloride (11a)。前記 6 の合成と同様の 方法を用いて、**9a**から **11a** を合成した。収率 43%。融点 215–217 ℃ (イソプロパノールから再結 晶)。¹H NMR (DMSO-*d*₆) δ 1.40 (6H, s), 2.22 (3H, s), 2.29 (3H, s), 2.94 (2H, s), 6.49 (1H, s), 9.58 (2H, br s)。*Anal.* calcd for C₁₂H₁₈CINO: C, 63.29; H, 7.97; N, 6.15。Found: C, 62.99; H, 8.09; N, 6.05。

2,3-Dihydro-2,2,4,7-tetramethyl-5-benzofuranamine hydrochloride (11b)。化合物 10b (1.0 g、 4.3 mmol) のメタノール (15 mL) 溶液に氷冷下で塩酸 (15 mL) を加え、アルゴン雰囲気下で 2 時間 加熱還流した。反応液を冷却した後炭酸水素ナトリウム水溶液で中和し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄した後乾燥、濃縮した。残渣を塩酸塩にした後エタノール—ジエ

チルエーテルから再結晶し、11b (0.93 g、収率 95%) を得た。融点 216-218 ℃。¹H NMR (DMSO-*d*₆) d 1.47 (6H, s), 2.13 (3H, s), 2.38 (3H, s), 2.93 (2H, s), 7.18 (1H, s), 10.21 (2H, br s)。*Anal.* calcd for C₁₂H₁₈ClNO: C, 63.29; H, 7.97; N, 6.15。Found: C, 63.16; H, 7.97; N, 5.86。

2,3-Dihydro-2,2,6,7-tetramethyl-5-benzofuranamine hydrochloride (11c)。前記 11b の合成と同様 の方法を用いて、10c から 11c を合成した。収率 95%。融点 235–238 °C (エタノールから再結 晶)。¹H NMR (CDCl₃) δ 1.45 (6H, s), 2.13 (3H, s), 2.40 (3H, s), 2.97 (2H, s), 7.27 (1H, s)。*Anal.* calcd for C₁₂H₁₈ClNO: C, 63.29; H, 7.97; N, 6.15。Found: C, 63.06; H, 8.21; N, 6.20。

2,3-Dihydro-2,2-dimethyl-5-benzofuranamine hydrochloride (11d)。前記 6 の合成と同様の方法 を用いて、9d から 11d を合成した。収率 48%。融点 265–270 °C (エタノール―ジイソプロピルエ ーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.42 (6H, s), 3.05 (2H, s), 6.78 (1H, d, *J* = 8.0 Hz), 7.11 (1H, dd, *J* = 2.0 Hz, 8.0 Hz), 7.22 (1H, d, *J* = 2.0 Hz), 10.25 (2H, br s)。*Anal*. calcd for C₁₀H₁₄ClNO: C, 60.15; H, 7.07; N, 7.02。Found: C, 60.22; H, 7.09; N, 7.17。

N-(2,3-Dihydro-2,2,6,7-tetramethyl-4-nitro-5-benzofuranyl)acetamide (12)。化合物 10c (15 g、64 mmol)の無水酢酸一酢酸 (150 mL; 1:1)溶液に 69% 硝酸 (7.7 mL)、無水酢酸 (25 mL)から調整 した硝酸アセチルを氷冷下で滴下し、混合物を氷冷下で 15 分間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、乾燥後濃縮した。残渣をシリカゲルカラ ムクロマトグラフィー(クロロホルム)で精製した後ジクロロメタン—ジイソプロピルエーテル から再結晶し、12 (16 g、収率 89%)を得た。融点 203–204 °C。¹H NMR (CDCl₃) δ 1.48 (6H, s), 2.15 (3H, s), 2.18 (3H, s), 2.19 (3H, s), 3.29 (2H, s), 7.79 (1H, br s)。

2,3-Dihydro-2,2,6,7-tetramethyl-4-nitro-5-benzfuranamine hydrochloride (13)。前記 11b の合成 と同様の方法を用いて、12 から 13 を合成した。収率 80%。融点 119–121 ℃ (エタノールージエ チルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.39 (6H, s), 2.09 (3H, s), 2.11 (3H, s), 3.37 (2H, s)。*Anal.* calcd for C₁₂H₁₇ClN₂O₃: C, 52.85; H, 6.28; N, 10.27。Found: C, 52.84; H, 6.30; N, 10.06。

2,3-Dihydro-2,2,6,7-tetramethyl-4,5-benzofurandiamine hydrochloride (14)。化合物 13 (4.9 g、21 mmol)のエタノール (100 mL)溶液に 10% パラジウム炭素 (1.4 g、50% 含水品)を加え、水素 雰囲気下、室温で 3 時間撹拌した。反応液をろ過した後、ろ液を減圧濃縮した。残渣をシリカゲ ルカラムクロマトグラフィー (クロロホルム)で精製し、14 の遊離塩基 (4.2 g、収率 97%)を得た。一部を塩酸塩にした後エタノールから再結晶し、14 を得た。融点 248–251 °C。¹H NMR (DMSO-*d*₆) δ 1.39 (6H, s), 1.93 (3H, s), 2.09 (3H, s), 2.82 (2H, s), 3.36 (4H, br s)。*Anal.* calcd for C₁₂H₁₉ClN₂O: C, 59.38; H, 7.89; N, 11.54。Found: C, 59.29; H, 7.94; N, 11.38。

N-[4-hydroxy-2,6-dimethyl-3-(2-methyl-2-propenyl)phenyl]acetamide (15)。前記 7b の合成と同様 の方法を用いて、4-amino-3,5-dimethylphenol から N-(4-hydroxy-2,6-dimethylphenyl)acetamide を合 成した。収率 85%。続いて前記 4 の合成と同様の方法を用いて、N-(4-hydroxy-2,6-dimethyl-

phenyl)acetamide から *N*-[2,6-dimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]acetamide を得た。さらに 前記 5 と同様の方法を用いて、*N*-[2,6-dimethyl-4-[(2-methyl-2-propenyl)oxy]phenyl]acetamide から 15 を得た。*N*-(4-Hydroxy-2,6-dimethyl-phenyl)acetamide からの収率 81%。得られた 15 はこれ以上 精製せずに次の反応に用いた。

N-[3-[(Dimethylamino)methyl]-4-hydroxy-2,6-dimethyl-5-(2-methyl-2-propenyl)phenyl]acetamide (16)。パラホルムアルデヒド (1.6 g、43 mmol) のエタノール (10 mL) 懸濁液に 50% ジメチルア ミン水溶液 (6.5 mL、64 mmol) を滴下し、この混合物を室温で 30 分間、均一になるまで撹拌し た。この溶液を、15 (5.0 g、21 mmol) のエタノール (30 mL) 溶液に滴下し、混合物をアルゴン 雰囲気下で 3.5 時間加熱還流した。反応液を冷却した後、減圧下濃縮した。残渣を短いシリカゲ ルカラムクロマトグラフィー (クロロホルム—メタノール、95:5) に付し、16 を褐色油状物とし て得た。得られた 16 はこれ以上精製せずに次の反応に用いた。

N-[7-[(Dimethylamino)methyl]-2,3-dihydro-2,2,4,6-tetramethyl-5-benzofuranyl]acetamide (17)。 前記 6 の合成と同様の方法を用いて、16 から 17 を合成した。得られた 17 はこれ以上精製せず に次の反応に用いた。

5-Amino-2,3-dihydro-*N*,*N*,2,2,4,6-hexamethyl-7-benzofuranmethanamine ethanedioate (1:1) (18)。 化合物 17 (4.8 g、17 mmol)、メタノール (3 mL) および 5 N 水酸化ナトリウム水溶液 (25 mL) の 混合物をアルゴン雰囲気下、封管中、200 °C で 13 時間撹拌した。反応液を冷却した後水を加 え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄後、乾燥、濃縮した。残留物をシリカ ゲルカラムクロマトグラフィー (クロロホルム—メタノール、88:12) で精製し、18 の遊離塩基 (1.7 g、収率 42%) を得た。一部をシュウ酸塩とした後エタノールから再結晶し、18 を。融点 178–180 °C。¹H NMR (DMSO-*d*₆) δ 1.39 (6H, s), 2.02 (3H, s), 2.07 (3H, s), 2.74 (6H, s), 2.93 (2H, s), 4.13 (2H, s)。*Anal.* calcd for C₁₇H₂₆N₂O₅: C, 60.34; H, 7.74; N, 8.28。Found: C, 60.15; H, 7.79; N, 8.22。

N-[3,5-Bis(2-methyl-2-propenyl)-4-hydroxy-2,6-dimethylphenyl]formamide (19)。前記 4 の合成と 同様の方法を用いて、9a から N-[2,6-dimethyl-3-(2-methyl-2-propenyl)-4-(2-methyl-2-propenyloxy)phenyl]formamide を得た。収率 98%。融点 109–110 °C (ジクロロメタン—ジイソプロピルエーテ ルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.72 (3H, s), 1.76 (3H, s), 2.01 (3H, s), 2.12 (3H, s), 3.32 (2H, s), 4.30 (1H, s), 4.41 (2H, s), 4.66 (1H, s), 4.93 (1H, s), 5.06 (1H, s), 6.73 (1H, s), 8.22 (1H, s), 9.27 (1H, s)。 続いて、前記 5 の合成と同様の方法を用いて、N-[2,6-dimethyl-3-(2-methyl-2-propenyl)-4-(2-methyl-2-propenyloxy)phenyl]formamide から 19 を合成した。収率 84%。融点 169–170 °C (ジイソプロピル エーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.72 (6H, s), 1.98 (6H, s), 3.33 (4H, s), 4.28 (2H, s), 4.65 (2H, s), 7.86 (1H, s), 8.20 (1H, s), 9.19 (1H, s)。

2,3-Dihydro-2,2,4,6-tetramethyl-7-(2-methyl-1-propenyl)-5-benzofuranamine hydrochloride (20).

前記 6 の合成と同様の方法を用いて、19 から 20 を得た。収率 80%。融点 207–208 °C (エタノー ルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.39 (6H, s), 1.46 (3H, s), 1.86 (3H, s), 2.13 (3H, s), 2.21 (3H, s), 2.97 (2H, s), 5.90 (1H, s), 9.38 (2H, br s)。*Anal*. calcd for C₁₆H₂₄ClNO: C, 68.19; H, 8.58; N, 4.97。 Found: C, 67.98; H, 8.69; N, 5.28。

2,3-Dihydro-2,2,4,6-tetramethyl-7-(2-methylpropyl)-5-benzofuranamine hydrochloride (21)。前記 14 の合成と同様の方法を用いて、20 から 21 を得た。収率 96%。融点 223–225 ℃ (エタノールか ら再結晶)。¹H NMR (DMSO-*d*₆) δ 0.85 (6H, d, *J* = 6.6 Hz), 1.39 (6H, s), 1.63–1.84 (1H, m), 2.21 (3H, s), 2.22 (3H, s), 2.38 (2H, d, *J* = 7.2 Hz), 2.96 (2H, s), 9.54 (2H, br s)。*Anal*. calcd for C₁₆H₂₆ClNO: C, 67.71; H, 9.23; N, 4.93。Found: C, 67.41; H, 9.29; N, 4.89。

N-[2-(Bromomethyl)-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (22)。化合物 5 (50 g、0.21 mol) と酢酸ナトリウム (31 g、0.37 mol) を酢酸 (500 mL) 中に加え、撹拌しながら 臭素 (17 mL、0.21 mol) を滴下した。反応液を 30 分間撹拌した後氷水中に注ぎ、酢酸エチルで 抽出した。抽出液を飽和炭酸水素ナトリウム水溶液で洗浄し、乾燥後濃縮した。残渣を酢酸エチ ルに再溶解し、不溶物をろ去した。ろ液を濃縮し、ジイソプロピルエーテルを加え析出した結晶 をろ取し、22 (44 g、収率 66%) を得た。融点 157–158 °C。¹H NMR (CDCl₃) δ 1.61 (1.5H, s), 1.63 (1.5H, s) 2.09 (3H, s), 2.11 (3H, s), 2.13 (1.5H, s), 2.16 (1.5H, s), 2.93 (1H, d, *J* = 15.8 Hz), 3.28 (0.5H, d, *J* = 15.8 Hz), 3.29 (0.5H, d, *J* = 15.8 Hz), 3.51 (1H, s), 3.53 (1H, s), 6.77 (0.5H, br s), 6.85 (0.5H, d, *J* = 12.0 Hz), 7.96 (0.5H, d, *J* = 12.0 Hz), 8.40 (0.5H, d, *J* = 1.4 Hz)。

N-[2,3-Dihydro-2,4,6,7-tetramethyl-2-[(phenylthio)methyl]-5-benzofuranyl]fomamide (23a)。化合物 22 (6.0 g、19 mmol) とチオフェノール (2.3 g、21 mmol)の DMF (50 mL)溶液に、60%水素 化ナトリウム (1.0 g、21 mmol)を加え、アルゴン雰囲気下 80 °C で 1 時間撹拌した。反応液を冷却した後水を加え、酢酸エチルで抽出した。抽出液を水洗、乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ジイソプロピルエーテル─酢酸エチル、1:1)で精製した後ジイソプロピルエーテル─へキサンから再結晶し、23a (5.5 g、収率 83%)を得た。融点 130–131 °C。¹H NMR (CDCl₃) δ 1.55 (1.5H, s), 1.56 (1.5H, s), 2.00 (3H, s), 2.06 (1.5H, s), 2.09 (1.5H, s), 2.11 (1.5H, s), 2.14 (1.5H, s), 2.91 (1H, d, *J* = 15.8 Hz), 3.23 (0.5H, d, *J* = 15.8 Hz), 3.43 (0.5H, d, *J* = 15.8 Hz), 3.27 (2H, s), 6.74 (0.5H, br s), 6.84 (0.5H, d, *J* = 12.0 Hz), 7.15–7.40 (5H, m), 7.97 (0.5H, d, *J* = 12.0 Hz), 8.40 (0.5H, d, *J* = 1.4 Hz)。

N-[2-[[(4-Fluorophenyl)thio]methyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (23b)。前記 23a の合成と同様の方法を用いて、22 と 4-フルオロチオフェノールから 23b を得 た。収率 96%。油状。¹H NMR (CDCl₃) δ 1.53 (1.5H, s), 1.55 (1.5H, s), 2.05 (3H, s), 2.06 (1.5H, s), 2.11 (3H, s), 2.14 (1.5H, s), 2.91 (1H, d, *J* = 15.8 Hz), 3.21 (2H, s), 3.22 (0.5H, d, *J* = 15.8 Hz), 3.25 (0.5H, d, *J* = 15.8 Hz), 6.74 (0.5H, br s), 6.82 (0.5H, d, *J* = 12.2 Hz), 6.95 (2H, t, *J* = 9.0 Hz), 7.36 (2H, dd, *J* = 5.2 Hz, 9.0 Hz), 7.97 (0.5H, d, J = 12.2 Hz), 8.40 (0.5H, d, J = 1.6 Hz).

N-[2,3-Dihydro-2-[[(4-hydroxyphenyl)thio]methyl]-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (23c)。前記 23a の合成と同様の方法を用いて、22 と 4-ヒドロキシチオフェノールから 23c を得 た。収率 93%。油状。¹H NMR (CDCl₃) δ 1.51 (1.5H, s), 1.53 (1.5H, s), 1.99 (1.5H, s), 2.01 (1.5H, s), 2.03 (1.5H, s), 2.07 (1.5H, s), 2.10 (1.5H, s), 2.14 (1.5H, s), 2.84 (0.5H, d, *J* = 15.4 Hz), 2.87 (0.5H, d, *J* = 15.8 Hz), 3.10 (0.5H, d, *J* = 15.4 Hz), 3.11 (0.5H, d, *J* = 15.8 Hz), 3.20 (0.5H, d, *J* = 15.8 Hz), 3.21 (0.5H, d, *J* = 15.8 Hz), 3.22 (0.5H, d, *J* = 15.4 Hz), 3.23 (0.5H, d, *J* = 15.8 Hz), 6.01 (0.5H, br s), 6.15 (0.5H, br s), 6.70 (2H, m), 6.81 (0.5H, br s), 6.85 (0.5H, br s), 7.25 (2H, m), 7.95 (0.5H, d, *J* = 11.8 Hz), 8.39 (0.5H, d, *J* = 1.6 Hz)。

N-[2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-pyridinylthio)methyl]-5-benzofuranny]formamide (23d)。前記 23a の合成と同様の方法を用いて、22 と 4-メルカプトピリジンから 23d を得た。収 率 72%。油状。¹H NMR (CDCl₃) δ 1.59 (1.5H, s), 1.61 (1.5H, s), 1.97 (3H, s), 2.08 (1.5H, s), 2.10 (1.5H, s), 2.13 (1.5H, s), 2.14 (1.5H, s), 2.98 (1H, d, *J* = 16.0 Hz), 3.25 (0.5H, d, *J* = 16.0 Hz), 3.30 (0.5H, d, *J* = 16.0 Hz), 3.31 (2H, s), 7.00 (0.5H, d, *J* = 12.0 Hz), 7.05 (0.5H, br s), 7.17 (2H, dd, *J* = 1.6 Hz, 6.2 Hz), 7.98 (0.5H, d, *J* = 12.0 Hz), 8.36 (2H, dd, *J* = 1.6 Hz, 6.2 Hz), 8.37 (0.5H, d, *J* = 1.6 Hz)。

N-[2,3-Dihydro-2,4,6,7-tetramethyl-2-[[(1-methyl-2-imidazolyl)thio]methyl]-5-benzofuranyl]formamide (23e)。前記 23a の合成と同様の方法を用いて、22 と 2-メルカプト-1-メチルイミダゾ ールから 23e を得た。収率 89%。油状。¹H NMR (CDCl₃) δ 1.53 (1.5H, s), 1.55 (1.5H, s), 1.97 (1.5H, s), 2.03 (1.5H, s), 2.04 (1.5H, s), 2.10 (3H, s), 2.14 (1.5H, s), 2.89 (1H, d, *J* = 15.6 Hz), 3.18 (0.5H, d, *J* = 15.6 Hz), 3.24 (0.5H, d, *J* = 15.6 Hz), 3.47 (2H, s), 3.49 (1.5H, s), 3.52 (1.5H, s), 6.87 (1H, m), 6.99 (0.5H, d, *J* = 12.0 Hz), 7.00 (1H, m), 7.11 (0.5H, br s), 7.95 (0.5H, d, *J* = 12.0 Hz), 8.37 (0.5H, d, *J* = 1.4 Hz)。

N-[2-[(2-Benzothiazolylthio)methyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (23f)。前記 23a の合成と同様の方法を用いて、22 と 2-メルカプトベンゾチアゾールから 23f を得 た。収率 88%。融点 190–192 ℃ (ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.64 (3H, s), 2.00 (3H, s), 2.07 (1.5H, s), 2.10 (1.5H, s), 2.11 (1.5H, s), 2.14 (1.5H, s), 2.99 (1H, d, *J* = 15.8 Hz), 3.27 (0.5H, d, *J* = 15.8 Hz), 3.29 (0.5H, d, *J* = 15.8 Hz), 3.78 (0.5H, d, *J* = 15.4 Hz), 3.79 (0.5H, d, *J* = 15.4 Hz), 3.87 (0.5H, d, *J* = 15.4 Hz), 3.88 (0.5H, d, *J* = 15.4 Hz), 6.73 (0.5H, br s), 6.75 (0.5H, d, *J* = 12.0 Hz), 7.20–7.50 (2H, m), 7.70–7.85 (2H, m), 7.97 (0.5H, d, *J* = 12.0 Hz), 8.40 (0.5H, d, *J* = 1.6 Hz)。

N-[2,3-Dihydro-2,4,6,7-tetramethyl-2-[[[(phenyl)methyl]thio]methyl]-5-benzofurannyl]formamide (23g)。前記 23a の合成と同様の方法を用いて、22 とベンジルメルカプタンから 23g を得た。収 率 84%。油状。¹H NMR (CDCl₃) δ 1.49 (1.5H, s), 1.50 (1.5H, s), 2.08 (1.5H, s), 2.12 (6H, s), 2.16 (1.5H, s), 2.71 (1H, d, *J* = 13.4 Hz), 2.77 (1H, d, *J* = 13.4 Hz), 2.86 (1H, d, *J* = 15.0 Hz), 3.18 (1H, d, *J* = 15.0 Hz), 3.74 (1H, d, *J* = 13.2 Hz), 3.18 (1H, d, *J* = 13.2 Hz), 6.76 (0.5H, br s), 6.87 (0.5H, d, *J* = 12.0 Hz), 7.30 (5H, m), 7.98 (0.5H, d, J = 12.0 Hz), 8.40 (0.5H, d, J = 1.4 Hz).

N-2,3-Dihydro-2,4,6,7-tetramethyl-2-[(propylthio)methyl]-5-benzofuranyl]formamide (23h)。前記 23a の合成と同様の方法を用いて、22 とプロピルメルカプタンから 23h を得た。収率 93%。油 状。¹H NMR (CDCl₃) δ 0.96 (3H, t, *J* = 7.4 Hz), 1.52 (1.5H, s), 1.54 (1.5H, s), 1.60 (2H, m), 2.08 (3H, s), 2.10 (1.5H, s), 2.12 (1.5H, s), 2.13 (1.5H, s), 2.16 (1.5H, s), 2.58 (2H, dt, *J* = 7.2 Hz, 1.2 Hz), 2.82 (1H, s), 2.84 (1H, s), 2.89 (1H, d, *J* = 15.8 Hz), 3.22 (0.5H, d, *J* = 15.8 Hz), 3.24 (0.5H, d, *J* = 15.8 Hz), 6.77 (0.5H, br s), 6.85 (0.5H, d, *J* = 12.0 Hz), 7.97 (0.5H, d, *J* = 12.0 Hz), 8.40 (0.5H, d, *J* = 1.6 Hz)。

N-2,3-Dihydro-2-[[(2-hydroxyethyl)thio]methyl]-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (23i)。前記 23a の合成と同様の方法を用いて、22 と 2-ヒドロキシエチルメルカプタンから 23i を 得た。収率 57%。油状。¹H NMR (CDCl₃) δ 1.52 (1.5H, s), 1.54 (1.5H, s), 2.09 (3H, s), 2.11 (1.5H, s), 2.12 (1.5H, s), 2.13 (1.5H, s), 2.16 (1.5H, s), 2.29 (0.5H, t, *J* = 6.4 Hz), 2.35 (0.5H, t, *J* = 6.4 Hz), 2.80 (2H, dt, *J* = 7.2 Hz, 1.2 Hz), 2.87 (0.5H, s), 2.89 (1H, s), 2.91 (1H, d, *J* = 15.4 Hz), 3.20 (0.5H, d, *J* = 15.4 Hz), 3.22 (0.5H, d, *J* = 15.4 Hz), 3.73 (2H, m), 6.78 (0.5H, br s), 6.80 (0.5H, d, *J* = 12.0 Hz), 7.97 (0.5H, d, *J* = 12.0 Hz), 8.38 (0.5H, d, *J* = 1.4 Hz)。

3-[[(5-Formylamino-2,3-dihydro-2,4,6,7-tetramethyl-2-benzofuranyl)methyl]thio]propanoic acid (23j)。前記 23a の合成と同様の方法を用いて、22 と 3-メルカプトプロピオン酸から 23j を得た。 収率 95%。油状。¹H NMR (CDCl₃) δ 1.52 (1.5H, s), 1.54 (1.5H, s), 2.08 (3H, s), 2.09 (3H, s), 2.12 (1.5H, s), 2.14 (1.5H, s), 2.64 (2H, t, *J* = 7.0 Hz), 2.86 (2H, t, *J* = 7.0 Hz), 2.87 (2H, s), 2.90 (1H, d, *J* = 15.4 Hz), 3.22 (1H, d, *J* = 15.4 Hz), 6.50 (0.5H, br s), 6.95 (0.5H, br s), 7.96 (0.5H, br s), 8.38 (0.5H, d, *J* = 1.6 Hz)。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(phenylthio)methyl]-5-benzofuranamine hydrochloride (24a)。 前記 11b の合成と同様の方法を用いて、23a から 24a を得た。収率 95%。融点 190–194 ℃ (エタ ノールージイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.51 (3H, s), 1.87 (3H, s), 2.19 (3H, s), 2.20 (3H, s), 2.99 (1H, d, *J* = 15.8 Hz), 3.22 (1H, d, *J* = 15.8 Hz), 3.38 (2H, s), 7.10–7.40 (5H, m), 9.69 (2H, br s)。*Anal.* calcd for C₁₉H₂₄CINOS: C, 65.22; H, 6.91; N, 4.00。Found: C, 65.45; H, 7.07; N, 3.89。

2,3-Dihydro-2-[[(4-fluorophenyl)thio]methyl]-2,4,6,7-tetramethyl-5-benzofuranamine

hydrochloride (24b). 前記 11b の合成と同様の方法を用いて、23b から 24b を得た。収率 81%。 融点 205–210 °C (分解) (エタノール─ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.49 (3H, s), 1.84 (3H, s), 2.19 (3H, s), 2.20 (3H, s), 2.98 (1H, d, *J* = 15.8 Hz), 3.21 (1H, d, *J* = 15.8 Hz), 3.31 (1H, d, *J* = 14.0 Hz), 3.39 (1H, d, *J* = 14.0 Hz), 7.13 (2H, t, *J* = 9.0 Hz), 7.38 (2H, dd, *J* = 9.0 Hz, 5.4 Hz), 9.67 (2H, br s)。*Anal.* calcd for C₁₉H₂₃CIFNOS: C, 62.03; H, 6.30; N, 3.81。Found: C, 62.00; H, 6.04; N, 3.78。

2,3-Dihydro-2-[[(4-hydroxyphenyl)thio]methyl]-2,4,6,7-tetramethyl-5-benzofuranamine

hydrochloride (24c)。前記 11b の合成と同様の方法を用いて、23c から 24c を得た。収率 96%。融 点 230–236 °C (分解) (エタノール―ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.46 (3H, s), 1.91 (3H, s), 2.18 (6H, s), 2.94 (1H, d, *J* = 15.8 Hz), 3.20 (1H, d, *J* = 15.8 Hz), 3.20 (2H, s), 6.70 (2H, d, *J* = 8.6 Hz), 7.19 (2H, d, *J* = 8.6 Hz), 9.45 (2H, br s), 9.56 (1H, s)。*Anal.* calcd for C₁₉H₂₄CINO₂S: C, 62.37; H, 6.61; N, 3.53。Found: C, 61.98; H, 6.74; N, 3.73。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-pyridinylthio)methyl]-5-benzofuranamine (24d)。前記 11b の合成と同様の方法を用いて、**23d** から **24d** を得た。収率 80%。融点 96–97 °C (酢酸エチルージ イソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.58 (3H, s), 2.00 (3H, s), 2.05 (3H, s), 2.06 (3H, s), 2.85 (2H, br s), 2.98 (1H, d, *J* = 15.6 Hz), 3.21 (1H, d, *J* = 15.6 Hz), 3.25 (1H, d, *J* = 14.0 Hz), 3.32 (1H, d, *J* = 14.0 Hz), 7.14 (2H, dd, *J* = 4.8 Hz, 2.0 Hz), 8.33 (2H, dd, *J* = 4.8 Hz, 2.0 Hz)。*Anal.* calcd for C₁₈H₂₂N₂OS: C, 68.75; H, 7.05; N, 8.91。Found: C, 68.46; H, 6.89; N, 8.76。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[[(1-methyl-2-imidazolyl)thio]methyl]-5-benzofuranamine dihydrochloride (24e)。前記 11b の合成と同様の方法を用いて、23e から 24e を得た。収率 65%。 融点 204–208 °C (分解) (エタノールージイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.50 (3H, s), 1.72 (3H, s), 2.19 (3H, s), 2.24 (3H, s), 3.05 (1H, d, *J* = 16.2 Hz), 3.29 (1H, d, *J* = 16.2 Hz), 3.50 (3H, s), 3.56 (1H, d, *J* = 14.6 Hz), 3.84 (1H, d, *J* = 14.6 Hz), 7.71 (1H, d, *J* = 1.8 Hz), 7.75 (1H, d, *J* = 1.8 Hz), 10.20 (2H, br s)。*Anal.* calcd for C₁₇H₂₅Cl₂N₃OS•0.5 H₂O: C, 51.13; H, 6.56; N, 10.52。Found: C, 51.11; H, 6.49; N, 10.59。

2-[[(2-Benzothiazolyl)thio]methyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranamine

hydrochloride (24f)。前記 11b の合成と同様の方法を用いて、23f から 24f を得た。収率 89%。融 点 220–225 °C (分解) (エタノール―ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.58 (3H, s), 1.76 (3H, s), 2.16 (3H, s), 2.21 (3H, s), 3.08 (1H, d, *J* = 15.8 Hz), 3.28 (1H, d, *J* = 15.8 Hz), 3.79 (1H, d, *J* = 14.6 Hz), 3.88 (1H, d, *J* = 14.6 Hz), 7.37 (1H, t, *J* = 7.6 Hz), 7.47 (1H, t, *J* = 7.6 Hz), 7.78 (1H, d, *J* = 7.6 Hz), 8.01 (1H, d, *J* = 7.6 Hz), 9.65 (2H, br s)。*Anal.* calcd for C₂₀H₂₃ClN₂OS₂: C, 59.02; H, 5.70; N, 6.88。Found: C, 58.78; H, 5.46; N, 6.84。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[[(phenylmethyl)lthio]methyl]-5-benzofuranamine

hydrochloride (24g)。前記 11b の合成と同様の方法を用いて、23g から 24g を得た。収率 74%。 融点 170–172 ℃ (エタノール―ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.44 (3H, s), 2.07 (3H, s), 2.23 (6H, s), 2.80 (2H, s), 2.93 (1H, d, *J* = 16.0 Hz), 3.13 (1H, d, *J* = 16.0 Hz), 3.77 (1H, d, *J* = 13.8 Hz), 3.87 (1H, d, *J* = 13.8 Hz), 7.29 (5H, m), 9.77 (2H, br s)。*Anal.* calcd for C₂₀H₂₆CINOS: C, 66.00; H, 7.20; N, 3.85。Found: C, 65.73; H, 7.17; N, 3.85。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(propylthio)methyl]-5-benzofuranamine hydrochloride (24h)。

前記 11b の合成と同様の方法を用いて、23h から 24h を得た。収率 75%。融点 186–188 °C (エタ ノール—ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 0.97 (3H, t, *J* = 7.4 Hz), 1.40– 1.70 (2H, m), 1.53 (3H, s), 2.09 (3H, s), 2.45–2.60 (2H, m), 2.50 (6H, s), 2.82 (2H, s), 2.88 (1H, d, *J* = 15.4 Hz), 3.28 (1H, d, *J* = 15.4 Hz), 10.10 (2H, br s)。*Anal.* calcd for C₁₆H₂₆ClNOS: C, 60.83; H, 8.30; N, 4.43。Found: C, 60.79; H, 8.29; N, 4.55。

2,3-Dihydro-2-[[(2-hydroxyethyl)thio]methyl]-2,4,6,7-tetramethyl-5-benzofuranamine (24i)。前記 **11b** の合成と同様の方法を用いて、**23i** から **24i** を得た。収率 32%。融点 108–109 °C (酢酸エチル ージイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.51 (3H, s), 2.07 (3H, s), 2.08 (3H, s), 2.11 (3H, s), 2.80 (1H, br s), 2.81 (2H, t, *J* = 5.4 Hz), 2.82 (1H, d, *J* = 15.0 Hz), 2.90 (1H, d, *J* = 15.0 Hz), 2.92 (1H, d, *J* = 15.4 Hz), 3.19 (1H, d, *J* = 15.4 Hz), 3.20 (2H, br s), 3.73 (2H, t, *J* = 5.4 Hz)。*Anal.* calcd for C₁₅H₂₃NO₂S: C, 64.02; H, 8.24; N, 4.98。Found: C, 63.95; H, 8.20; N, 4.99。

3-[[(5-Amino-2,3-dihydro-2,4,6,7-tetramethyl-2-benzofuranyl)methyl]thio]propanonic acid (24j)。 前記 11b の合成と同様の方法を用いて、**23j**から **24j**を得た。収率 78%。融点 139–140 °C (酢酸エ チルージイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.51 (3H, s), 2.07 (6H, s), 2.09 (3H, s), 2.64 (2H, t, *J* = 6.8 Hz), 2.80 (1H, d, *J* = 14.0 Hz), 2.87 (1H, d, *J* = 14.0 Hz), 2.88 (2H, t, *J* = 6.8 Hz), 2.91 (1H, d, *J* = 15.4 Hz), 3.20 (1H, d, *J* = 15.4 Hz), 4.90 (3H, br s)。*Anal*. calcd for C₁₆H₂₃NO₃S: C, 62.11; H, 7.49; N, 4.53。Found: C, 61.84; H, 7.54; N, 4.36。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(phenylmethoxy)methyl]-5-benzofuranamine hydrochloride (24k)。化合物 22 (2.0 g、6.4 mmol) にベンジルアルコール (20 mL) および 60% 水素化ナトリウ ム (1.0 g、25 mmol) を加え、封管中 180 °C で 18 時間撹拌した。反応液を冷却後水で希釈し、酢 酸エチルで抽出した。抽出液を水洗乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマト グラフィー (ジイソプロピルエーテル) で精製した。得られた遊離塩基を塩酸塩とした後エタノ ール—ジイソプロピルエーテルから結晶化させ、24k (0.68 g、収率 31%) を得た。融点 195– 200 °C。¹H NMR (DMSO-*d*₆) δ 1.40 (3H, s), 2.05 (3H, s), 2.22 (6H, s), 2.88 (1H, d, *J* = 15.8 Hz), 3.17 (1H, d, *J* = 15.8 Hz), 3.51 (2H, s), 4.56 (2H, s), 7.31 (5H, m), 9.71 (2H, br s)。*Anal.* calcd for C₂₀H₂₆CINO₂•0.5 H₂O: C, 67.31; H, 7.63; N, 3.93。Found: C, 67.34; H, 7.67; N, 4.19。

2,3-Dihydro-2-methoxy-2,4,6,7-tetramethyl-5-benzofuranamine hydrochloride (24I)。前記 24k の 合成と同様の方法を用いて、22 とメタノールから 24I を得た。収率 50%。融点 180–182 °C (エタ ノールージイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.37 (3H, s), 2.04 (3H, s), 2.22 (6H, s), 2.85 (1H, d, *J* = 16.0 Hz), 3.14 (1H, d, *J* = 16.0 Hz), 3.31 (3H, s), 3.43 (2H, s), 9.77 (2H, br s)。 *Anal.* calcd for C₁₃H₂₀ClNO₂: C, 60.58; H, 7.82; N, 5.43。Found: C, 61.83; H, 8.25; N, 5.05 (without further purification)。

2,3-Dihydro-2,4,6,7-tetramethyl-2-(1-piperidinylmethyl)-5-benzofuranamine (24m)。化合物 22

(2.0 g、6.4 mmol) およびピペリジン (6.3 mL、64 mmol) の混合物を、封管中アルゴン雰囲気下、 180 °C で 15 時間撹拌した。反応液を冷却した後水で希釈し、食塩を飽和させた後、酢酸エチル で抽出した。抽出液を飽和食塩水で洗浄した後乾燥し、減圧下で濃縮した。残渣をジイソプロピ ルエーテルから再結晶し、24m (1.5 g、収率 82%) を得た。融点 60–61 °C。¹H NMR (CDCl₃) δ 1.30–1.60 (6H, m), 1.42 (3H, s), 2.07 (6H, s), 2.10 (3H, s), 2.35–2.65 (6H, m), 2.80 (1H, d, *J* = 15.9 Hz), 3.10 (2H, br s), 3.11 (1H, d, *J* = 15.9 Hz)。*Anal.* calcd for C₁₈H₂₈N₂O: C, 74.96; H, 9.87; N, 9.71。Found: C, 75.08; H, 9.69; N, 9.68。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine dihydrochloride (24n)。化合物 25 (36 g、 0.13 mol、遊離塩基)、4-フェニルピペリジン (41 g、 0.25 mol) およびトリエチルアミン (53 mL、 0.38 mol) の混合物を、封管中アルゴン雰囲気下、180 °C で 15 時間撹拌した。反応液をクロロホルムおよび飽和重曹水で希釈した後、二層を分離した。水 層をクロロホルムで抽出した後、有機層を合わせた。これを飽和食塩水で洗浄し、乾燥後濃縮し た。残渣をシリカゲルカラムクロマトグラフィー (クロロホルム—メタノール、97:3) に付した 後、クロロホルム—ジイソプロピルエーテルから再結晶し、24n の遊離塩基を得た。これをエタ ノール—クロロホルムに溶解し、塩化水素 (10 g) のエタノール溶液を加えた後、濃縮した。残 渣をエタノールから結晶化させ、24n (32 g、収率 73%) を得た。融点 200–202 °C (分解)。¹H NMR (DMSO-4₆) δ 1.62 (3H, s), 1.80–2.04 (4H, m), 2.07 (3H, s), 2.22 (3H, s), 2.24 (3H, s), 2.30 (1H, br s), 2.70–2.90 (1H, m), 3.05 (1H, d, *J* = 15.8 Hz), 3.10–3.60 (5H, m), 3.76–3.88 (1H, m), 7.20–7.40 (5H, m), 9.70 (3H, br s), 10.40 (1H, br s)。*Anal.* calcd for C₂₄H₃₄Cl₂N₂O•0.3 H₂O: C, 65.09; H, 7.87; N, 6.33。

2,3-Dihydro-2,4,6,7-tetramethyl-2-(4-morpholinylmethyl)-5-benzofuranamine (240)。前記 24m の 合成と同様の方法を用いて、22 とモルホリンから 24o を得た。収率 81%。融点 114–115 ℃ (ジイ ソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.42 (3H, s), 2.07 (9H, s), 2.40–2.70 (6H, m), 2.81 (1H, d, *J* = 15.0 Hz), 3.13 (1H, d, *J* = 15.0 Hz), 3.20 (2H, br s), 3.67 (4H, t, *J* = 4.6 Hz)。*Anal*. calcd for C₁₇H₂₆N₂O₂: C, 70.31; H, 9.02; N, 9.65。Found: C, 70.32; H, 9.11; N, 9.55。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-methyl-1-piperazinyl)methyl]-5-benzofuranamine (24p)。前記 24m の合成と同様の方法を用いて、22 と *N*-メチルピペラジンから 24p を得た。収率 76%。融点 76–77 °C (ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.42 (3H, s), 2.07 (6H, s), 2.09 (3H, s), 2.25 (3H, s), 2.40 (4H, m), 2.48 (1H, d, *J* = 14.2 Hz), 2.50–2.80 (4H, m), 2.58 (1H, d, *J* = 14.2 Hz), 2.80 (1H, d, *J* = 15.4 Hz), 3.11 (1H, d, *J* = 15.4 Hz), 3.25 (2H, br s)。*Anal.* calcd for C₁₈H₂₉N₃O: C, 71.25; H, 9.63; N, 13.85。Found: C, 71.02; H, 9.34; N, 13.85。

2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperazinyl)methyl]-5-benzofuranamine (24q)。前 記 24m の合成と同様の方法を用いて、22 と *N*-フェニルピペラジンから 24q を得た。収率 75%。 融点 94-95 °C (ジイソプロピルエーテルから結晶化)。¹H NMR (CDCl₃) & 1.45 (3H, s), 2.08 (6H, s), 2.12 (3H, s), 2.55-2.90 (8H, m), 2.90-3.50 (6H, m), 6.80-7.00 (3H, m), 7.25 (2H, m)。*Anal.* calcd for C₂₃H₃₁N₃O: C, 75.58; H, 8.55; N, 11.50。Found: C, 55.51; H, 8.46; N, 11.41。

2-[[4-(Diphenylmethyl)-1-piperazinyl]methyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranamine trihydrochloride (24r). 前記 24m の合成と同様の方法を用いて、22 と *N*-(ジフェニルメチル)ピ ペラジンから 24r を得た (反応溶媒トルエン)。収率 34%。融点 193–196 °C (分解) (エタノールー ジエチルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) d 1.50 (3H, s), 1.99 (6H, s), 2.21 (3H, s), 3.03– 3.51 (12H, m), 5.20 (1H, br s), 7.33–7.45 (6H, m), 7.68 (4H, br s)。*Anal.* calcd for C₃₀H₄₀Cl₃N₃O•0.5 H₂O: C, 62.77; H, 7.20; N, 7.32。Found: C, 62.89; H, 7.59; N, 7.64。

5-Amino-2,3-dihydro-2,4,6,7-tetramethyl-N-phenyl-2-benzofuranmethanamine dihydrochloride (24s)。前記 24m の合成と同様の方法を用いて、22 とアニリンから 24s を得た。収率 36%。融点 162–168 °C (エタノール─ジエチルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.45 (3H, s), 2.00 (3H, s), 2.20 (3H, s), 2.22 (3H, s), 2.90 (1H, d, *J* = 16.4 Hz), 3.22 (1H, d, *J* = 16.4 Hz), 3.31 (2H, s), 6.61 (1H, t, *J* = 7.8 Hz), 6.74 (2H, d, *J* = 7.8 Hz), 7.08 (2H, t, *J* = 7.8 Hz), 9.78 (3H, br s)。 *Anal.* calcd for C₁₉H₂₆Cl₂N₂O: C, 61.79; H, 7.10; N, 7.58。Found: C, 61.86; H, 7.55; N, 7.35。

5-Amino-2,3-dihydro-2,4,6,7-tetramethyl-N-(phenylmethyl)-2-benzofuranmethanamine dihydrochloride (24t)。前記 24m の合成と同様の方法を用いて、22 とベンジルアミンから 24t を得た。収 率 65%。融点 228–232 ℃ (分解) (エタノール―ジエチルエーテルから再結晶)。¹H NMR (DMSO*d*₆) δ 1.48 (3H, s), 2.07 (3H, s), 2.22 (3H, s), 2.23 (3H, s), 2.93 (1H, d, *J* = 16.2 Hz), 3.10 (2H, s), 3.41 (1H, d, *J* = 16.2 Hz), 4.19 (2H, s), 7.38–7.42 (3H, m), 7.60–7.65 (2H, m), 9.70 (3H, br s)。*Anal.* calcd for C₂₀H₂₈Cl₂N₂O: C, 62.66; H, 7.36; N, 7.31。Found: C, 62.46; H, 7.16; N, 7.21。

2,3-Dihydro-2-(1*H***-imidazol-1-ylmethyl)-2,4,6,7-tetramethyl-5-benzofuranamine** dihydrochloride (24u)。前記 24m の合成と同様の方法を用いて、22 とイミダゾールから 24u を得た(反応溶媒トルエン)。収率 38%。融点 278–283 °C (分解) (エタノールージイソプロピルエーテルから再結 晶)。¹H NMR (DMSO-*d*₆) δ 1.41 (3H, s), 2.08 (3H, s), 2.24 (6H, s), 3.09 (1H, d, *J* = 16.2 Hz), 3.23 (1H, d, *J* = 16.2 Hz), 4.54 (2H, s), 7.66 (1H, d, *J* = 1.6 Hz), 7.73 (1H, d, *J* = 1.6 Hz), 9.19 (1H, s), 10.80 (2H, br s). *Anal.* calcd for C₁₆H₂₃Cl₂N₃O•0.5 H₂O: C, 54.40; H, 6.85; N, 11.89。Found: C, 54.61; H, 6.70; N, 11.87。

2-(Bromomethyl)-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranamine hydrochloride (25)。前記 11b の合成と同様の方法を用いて、22 から 25 を得た。収率 90%。融点 235-245 °C (分解) (エタノ ールージイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.53 (3H, s), 2.04 (3H, s), 2.23 (3H, s), 2.24 (3H, s), 3.03 (1H, d, *J* = 16.0 Hz), 3.27 (1H, d, *J* = 16.0 Hz), 3.77 (2H, s), 9.85 (2H, br s)。 *Anal*. calcd for C₁₃H₁₉BrClNO: C, 48.69; H, 5.97; N, 7.37。Found: C, 48.58; H, 6.02; N, 7.27。 *N*-[2,3-Dihydro-2-(hydroxymethyl)-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (26)。化合物 5 (2.0 g、7.7 mmol) のジクロロメタン (20 mL) 溶液に飽和炭酸水素ナトリウム水溶液 (10 mL) を 加え、氷冷下で撹拌しながら *m*-クロロ過安息香酸 (3.2 g、19 mmol) を加えた。反応液を室温で 1 時間攪拌した後、溶媒を留去した。残渣に酢酸エチル、THF およびトリエチルアミンを加え水 洗し、続いて 10% ハイドロサルファイトナトリウム水溶液 (10 mL) を加えて震とうした。有機 層を分け飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、乾燥後濃縮した。残渣を酢 酸エチルージイソプロピルエーテルから再結晶し、26 (1.35 g、収率 64%) を得た。融点 149-150 °C。¹H NMR (DMSO-*d*₆) δ 1.33 (3H, s), 1.97 (3H, s), 1.98 (3H, s), 2.00 (3H, s), 2.73 (1H, d, *J* = 15.4 Hz), 3.42 (2H, d, *J* = 5.8 Hz), 5.01 (1H, t, *J* = 5.8 Hz), 7.83 (0.2H, d, *J* = 11.6 Hz), 8.21 (0.8H, d, *J* = 1.2 Hz), 9.05 (0.2H, d, *J* = 11.6 Hz), 9.20 (0.8H, br s)。

N-[2-Formyl-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (27)。塩化オキサリル (0.40 mL、4.2 mmol)のジクロロメタン (10 mL)溶液を -78 ℃ に冷却し、撹拌しながらジメチ ルスルホキシド (1 mL)を加えた。反応液を同温度で 10 分間撹拌した後、26 (1.0 g、4.0 mmol) のジクロロメタン (2 mL)溶液を滴下した。反応液をさらに 15 分間同温度で撹拌した後、トリ エチルアミン (3.5 mL)を加えた。反応液を 1 N 塩酸、飽和炭酸水素ナトリウム水溶液の順で洗 い、乾燥後濃縮した。残渣を酢酸エチル—ジイソプロピルエーテルから再結晶して、27 (0.68 g、 収率 69%)を得た。融点 154–155 ℃。¹H NMR (CDCl₃) δ 1.55 (1.5H, s), 1.57 (1.5H, s), 2.08 (3H, s), 2.12 (3H, s), 2.15 (3H, s), 2.94 (1H, d, *J* = 15.4 Hz), 3.41 (0.5H, d, *J* = 15.4 Hz), 3.44 (0.5H, d, *J* = 15.4 Hz), 7.00 (1H, m), 7.95 (0.5H, d, *J* = 12.0 Hz), 8.34 (0.5H, d, *J* = 1.8 Hz), 9.73 (0.5H, s), 9.74 (0.5H, s)。

(*E*)-3-[5-(Formylamino)-2,3-dihydro-2,4,6,7-tetramethyl-2-benzofuranyl]propenoic acid ethyl ester (28)。 化合物 27 (1.0 g、 4.1 mmol)、ジエチルホスホノ酢酸エチル (0.91 g、 4.1 mmol) および 60% 水素化ナトリウム (0.16 g、 4.1 mmol) を DMF (20 mL) に加え、室温で1時間撹拌した。反 応液を水で希釈し、酢酸エチルで抽出した。抽出液を水洗、乾燥後、溶媒を留去した。残渣をシ リカゲルカラムクロマトグラフィー (酢酸エチルーイソプロピルエーテル、1:1) で精製し、 28 (0.50 g、収率 39%) を得た。油状。¹H NMR (CDCl₃) & 1.29 (3H, t, *J* = 7.2 Hz), 1.60 (3H, s), 2.06 (1.5H, s), 2.11 (1.5H, s), 2.13 (1.5H, s), 2.15 (1.5H, s), 2.17 (3H, s), 3.05 (1H, d, *J* = 15.4 Hz), 3.15 (1H, d, *J* = 15.4 Hz), 4.19 (2H, d, *J* = 7.2 Hz), 6.02 (1H, d, *J* = 15.6 Hz), 6.92 (0.5H, br s), 6.95 (0.5H, d, *J* = 12.0 Hz), 7.02 (1H, d, *J* = 15.6 Hz), 7.95 (0.5H, d, *J* = 12.0 Hz), 8.39 (0.5H, d, *J* = 1.6 Hz).

3-(5-Amino-2,3-dihydro-2,4,6,7-tetramethyl-2-benzofuranyl)propenoic acid methyl ester hydrochloride (29)。前記 11b の合成と同様の方法を用いて、28 から 29 を得た。収率 75%。融点 225–234 °C (エタノール―ジイソプロピルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.58 (3H, s), 2.11 (3H, s), 2.19 (3H, s), 2.21 (3H, s), 3.12 (1H, d, *J* = 15.0 Hz), 3.24 (1H, d, *J* = 15.0 Hz), 3.65 (3H, s), 5.93 (1H, d, *J* = 16.0 Hz), 7.04 (1H, d, *J* = 16.0 Hz), 9.50 (2H, br s)。*Anal*. calcd for C₁₆H₂₁NO₃: C, 61.63; H, 7.11; N, 4.49。Found: C, 61.68; H, 7.12; N, 4.27。 N-[2-[2-(4-Fluorophenyl)ethyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (31)。 4-フルオロベンジルトリメチルホスホニウムクロリド (9.3 g、23 mmol) を THF (100 mL) に懸濁 し、-78 ℃ に冷却して撹拌しながら 1.6 M *n*-ブチルリチウムヘキサン溶液 (14 mL、23 mmol) を 加えた。反応液を 15 分間撹拌し、続いて 27 (6.0 g、23 mmol) を加えた。反応液をさらに 30 分 間室温で撹拌し、水を加えて酢酸エチルで抽出した。抽出液を水洗、乾燥後濃縮した。残渣をシ リカゲルカラムクロマトグラフィー (酢酸エチルージイソプロピルエーテル) で精製して、(*Z*)-*N*-[2-[2-(4-fluorophenyl)ethenyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranyl]formamide (30) (4.2 g、 収率 59%) を油状物として得た。次に本化合物をエタノール (50 mL) に溶解し、5% パラジウム 炭素 (0.2 g) を加えて水素雰囲気下、室温で 2 時間撹拌した。反応液をろ過した後ろ液を濃縮 し、酢酸エチルに再溶解して不溶物を除き、再び濃縮した。残渣をメタノールから再結晶し、31 (3.6 g、収率 86%) を得た。融点 139–140 °C。¹H NMR (CDCl₃) & 1.48 (1.5H, s), 1.50 (1.5H, s), 2.00 (2H, m), 2.10 (1.5H, s), 2.11 (1.5H, s), 2.12 (4.5H, s), 2.17 (1.5H, s), 2.70 (2H, m), 2.91 (1H, d, *J* = 15.4 Hz), 3.05 (1H, d, *J* = 15.4 Hz), 6.66 (0.5H, br s), 6.71 (0.5H, s), 6.95 (2H, t, *J* = 8.6 Hz), 7.13 (2H, dd, *J* = 5.6 Hz, 8.6 Hz), 7.98 (0.5H, d, *J* = 12.2 Hz), 8.42 (0.5H, d, *J* = 1.6 Hz)。

2-[2-(4-Fluorophenyl)ethyl]-2,3-dihydro-2,4,6,7-tetramethyl-5-benzofuranamine (32)。前記 11b の 合成と同様の方法を用いて、31 から 32 を得た。収率 85%。融点 62-63 °C (酢酸エチルージイソ プロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.47 (3H, s), 1.98 (2H, m), 2.10 (3H, s), 2.14 (3H, s), 2.19 (3H, s), 2.72 (2H, m), 2.90 (1H, d, *J* = 14.0 Hz), 3.00 (2H, br s), 3.05 (1H, d, *J* = 14.0 Hz), 6.95 (2H, m), 7.13 (2H, m)。*Anal*. calcd for C₂₀H₂₄FNO: C, 76.65; H, 7.72; N, 4.47。Found: C, 76.36; H, 7.67; N, 4.48。

2-Bromo-3-methoxy-1,4,5-trimethylbenzene (33)。 tert-ブチルアミン (73 g、1.0 mol)のトルエン (1 L)溶液を -20~-30 ℃ に冷却し、撹拌しながら臭素 (80 g、0.50 mol)を約 10分間で滴下し た。次に反応液を -70~-75 ℃ に冷却し、2,3,5-トリメチルフェノール (68 g、0.50 mol)を最少 量のジクロロメタンに溶かして滴下した。反応液を 30 分間同温度で、続いて 3 時間室温で撹拌 した後、水で洗浄し、乾燥後濃縮した。別の反応器内に 60%水素化ナトリウム (22 g、0.55 mol) を入れへキサンで数回洗った後 DMF (500 mL)を加え、アルゴン雰囲気下、氷冷しながら先の濃 縮残渣の DMF (50 mL)溶液を滴下した。反応液を 30 分間撹拌し、続いてヨウ化メチル (34 mL、0.55 mol)を滴下し、さらに 1 時間撹拌した。反応液を水で希釈し、ジイソプロピルエーテ ルで抽出した。抽出液を水洗、乾燥後、濃縮した。残渣を蒸留して、33 (32 g、収率 29%)を得 た。沸点 130-135 ℃ / 10 mmHg。¹H NMR (CDCl₃) δ 2.20 (3H, s), 2.21 (3H, s), 2.34 (3H, s), 3.76 (3H, s), 6.83 (1H, s)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-phenylbenzenemethanol (34a)。化合物 33 (3.0 g、 13 mmol) の THF (20 mL) 溶液を –78 °C に冷却し、1.6 M *n*-ブチルリチウムヘキサン溶液(8.2 mL、 13 mmol) を滴下した。反応液を同温度で 15 分間撹拌し、次にイソプロピルフェニルケトン (1.9 g、13 mmol)の THF (5 mL)溶液を滴下し、室温でさらに 30 分間撹拌した。反応液を水で希釈し、 ジイソプロピルエーテルで抽出した。抽出液は水洗、乾燥後、濃縮した。残渣をヘキサンから結 晶化させ、34a (3.1 g、収率 80%)を得た。融点 80–81 °C。¹H NMR (CDCl₃) δ 0.88 (3H, d, *J* = 6.6 Hz), 1.05 (3H, d, *J* = 6.4 Hz), 2.07 (3H, s), 2.18 (3H, s), 2.58 (3H, s), 2.82 (1H, qq, *J* = 6.4 Hz, 6.6 Hz), 2.90 (3H, s), 6.18 (1H, br s), 6.75 (1H, s), 7.10–7.30 (3H, m), 7.40–7.50 (2H, m)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-(4-methylphenyl)benzenemethanol (34b)。前記 34a の合成と同様の方法を用いて、33 とイソプロピル(4-メチルフェニル)ケトンから 34b を得た。 収率 81%。融点 103–104 ℃ (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 0.89 (3H, d, *J* = 6.6 Hz), 1.03 (3H, d, *J* = 6.4 Hz), 2.09 (3H, s), 2.19 (3H, s), 2.30 (3H, s), 2.56 (3H, s), 2.82 (1H, qq, *J* = 6.4 Hz, 6.6 Hz), 2.95 (3H, s), 6.18 (1H, br s), 6.75 (1H, s), 7.07 (2H, d, *J* = 8.2 Hz), 7.32 (2H, d, *J* = 8.2 Hz)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-(4-propylphenyl)benzenemethanol (34c)。前記 34a の合成と同様の方法を用いて、33 とイソプロピル(4-プロピルフェニル)ケトンから 34c を得た。収率 75%。融点 59–60 °C (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 0.87 (3H, d, *J* = 6.4 Hz), 0.90 (3H, d, *J* = 6.6 Hz), 1.03 (3H d, *J* = 6.4 Hz), 1.60 (2H, sextet, *J* = 6.4 Hz), 2.08 (3H, s), 2.18 (3H, s), 2.54 (2H, t, *J* = 6.4 Hz), 2.56 (3H, s), 2.84 (1H, qq, *J* = 6.6 Hz, 6.4 Hz), 2.93 (3H, s), 6.15 (1H, br s), 7.06 (2H, d, *J* = 8.4 Hz), 7.33 (2H, d, *J* = 8.4 Hz)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-(4-pentylphenyl)benzenemethanol (34d)。前記 34a の合成と同様の方法を用いて、33 とイソプロピル(4-ペンチルフェニル)ケトンから 34d を得 た。収率 75%。融点 55–56 °C (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 0.85 (3H, d, *J* = 6.2 Hz), 0.90 (3H, d, *J* = 6.6 Hz), 1.03 (3H, d, *J* = 6.6 Hz), 1.28 (4H, m), 1.56 (2H, quintet, *J* = 6.8 Hz), 2.08 (3H, s), 2.18 (3H, s), 2.54 (2H, t, *J* = 7.5 Hz), 2.55 (3H, s), 2.84 (1H, septet, *J* = 6.6 Hz), 2.92 (3H, s), 6.15 (1H, br s), 6.75 (1H, s), 7.07 (2H, d, *J* = 8.0 Hz), 7.34 (2H, d, *J* = 8.0 Hz)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-[4-(1-methylethyl)phenyl]benzenemethanol (34e)。 前記 34a の合成と同様の方法を用いて、33 とイソプロピル(4-イソプロピルフェニル)ケトンから 34e を得た。収率 65%。油状。¹H NMR (CDCl₃) δ 0.91 (3H, d, *J* = 6.6 Hz), 1.02 (3H, d, *J* = 6.6 Hz), 1.20 (6H, d, *J* = 7.0 Hz), 2.08 (3H, s), 2.17 (3H, s), 2.54 (3H, s), 2.84 (1H, septet, *J* = 6.6 Hz), 2.93 (3H, s), 2.96 (1H, septet, *J* = 7.0 Hz), 6.16 (1H, br s), 6.74 (1H, s), 7.10 (2H, d, *J* = 8.4 Hz), 7.90 (2H, d, *J* = 8.4 Hz).

α-(4-Fluorophenyl)-2-methoxy-3,4,6-trimethyl-α-(1-methylethyl)benzenemethanol (34f)。前記 34a の合成と同様の方法を用いて、33 と(4-フルオロフェニル)イソプロピルケトンから 34f を得た。 収率 98%。融点 102–103 °C (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 0.88 (3H, d, *J* = 6.6 Hz), 1.02 (3H, d, *J* = 6.4 Hz), 2.08 (3H, s), 2.19 (3H, s), 2.53 (3H, s), 2.80 (1H, qq, *J* = 6.4 Hz, 6.6 Hz), 2.97 (3H, s), 6.23 (1H, br s), 6.75 (1H, s), 6.95 (2H, t, *J* = 8.8 Hz), 7.40 (2H, dd, *J* = 8.8 Hz, 5.4 Hz)。

2-Methoxy-3,4,6-trimethyl-α-(1-methylethyl)-α-(3-pyridinyl)benzenemethanol (34g)。前記 34a の

合成と同様の方法を用いて、33 とイソプロピル(3-ピリジル)ケトンから 34g を得た。収率 69%。 油状。¹H NMR (CDCl₃) δ 0.93 (3H, d, *J* = 6.6 Hz), 1.03 (3H, d, *J* = 6.6 Hz), 2.09 (3H, s), 2.19 (3H, s), 2.51 (3H, s), 2.90 (1H, septet, *J* = 6.6 Hz), 3.05 (3H, s), 6.29 (1H, br s), 6.76 (1H, s), 7.22 (1H, dd, *J* = 4.8 Hz, 8.0 Hz), 7.79 (1H, dt, *J* = 2.0 Hz, 8.0 Hz), 8.43 (1H, dd, *J* = 2.0 Hz, 4.8 Hz), 8.70 (1H, d, *J* = 2.0 Hz)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-phenylbenzofuran (**35a**)。化合物 **34a** (3.1 g、10 mmol) を 48% 臭化水素酸 (20 mL) に懸濁し、アルゴン雰囲気下で 18 時間加熱還流した。反応液を室温に 戻した後、ジイソプロピルエーテルで抽出した。抽出液を水洗、乾燥後濃縮した。残渣をエタノ ールから結晶化させ、**35a** (2.43 g、収率 88%) を得た。融点 86–87 °C。¹H NMR (CDCl₃) δ 1.02 (3H, s), 1.51 (3H, s), 1.84 (3H, s), 2.15 (3H, s), 2.24 (3H, s), 4.13 (1H, s), 6.49 (1H, s), 6.70–7.40 (5H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-methylphenyl)benzofuran (35b)。前記 35a の合成と同様 の方法を用いて、**34b** から **35b** を得た。収率 88%。融点 117–118 ℃ (メタノールから再結晶)。¹H NMR (CDCl₃) δ 1.02 (3H, s), 1.50 (3H, s), 1.85 (3H, s), 2.15 (3H, s), 2.24 (3H, s), 2.31 (3H, s), 4.10 (1H, s), 6.49 (1H, s), 6.50–7.20 (4H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-propylphenyl)benzofuran (35c)。前記 35a の合成と同様 の方法を用いて、34c から 35c を得た。収率 85%。融点 96–97 °C (メタノールから再結晶)。¹H NMR (CDCl₃) δ 0.90 (3H, t, *J* = 7.2 Hz), 1.02 (3H, s), 1.50 (3H, s), 1.61 (2H, sextet, *J* = 8.0 Hz), 1.84 (3H, s), 2.15 (3H, s), 2.24 (3H, s), 2.55 (2H, t, *J* = 8.0 Hz), 4.10 (1H, s), 6.49 (1H, s), 6.60–7.20 (4H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-pentylphenyl)benzofuran (35d)。前記 35a の合成と同様 の方法を用いて、34d から 35d を得た。収率 71%。油状。¹H NMR (CDCl₃) & 0.88 (3H, t, *J* = 4.6 Hz), 1.03 (3H, s), 1.30 (4H, m), 1.50 (3H, s), 1.56 (2H, m), 1.85 (3H, s), 2.15 (3H, s), 2.24 (3H, s), 2.56 (2H, t, *J* = 8.0 Hz), 4.10 (1H, s), 6.45 (1H, s), 6.60–7.20 (4H, m)。

2,3-Dihydro-3-[4-(1-methylethyl)phenyl]-2,2,4,6,7-pentamethylbenzofuran (35e)。前記 35a の合成 と同様の方法を用いて、34e から 35e を得た。収率 65%。油状。¹H NMR (CDCl₃) & 1.02 (3H, s), 1.21 (6H, d, *J* = 7.0 Hz), 1.49 (3H, s), 1.84 (3H, s), 2.14 (3H, s), 2.24 (3H, s), 2.95 (1H, septet, *J* = 7.0 Hz), 4.09 (1H, s), 6.48 (1H, s), 6.70–7.20 (4H, m)。

3-(4-Fluorophenyl)-2,3-dihydro-2,2,4,6,7-pentamethylbenzofuran (35f)。前記 35a の合成と同様の 方法を用いて、34f から 35f を得た。収率 84%。融点 109–110 °C (メタノールから再結晶)。¹H NMR (CDCl₃) δ 1.02 (3H, s), 1.49 (3H, s), 1.83 (3H, s), 2.14 (3H, s), 2.24 (3H, s), 4.10 (1H, s), 6.49 (1H, s), 6.60–7.20 (4H, m)。

3-(2,3-Dihydro-2,2,4,6,7-pentamethyl-3-benzofuranyl)pyridine (35g)。前記 35a の合成と同様の方 法を用いて、34g から 35g を得た。収率 77%。油状。¹H NMR (CDCl₃) δ 1.05 (3H, s), 1.53 (3H, s), 1.84 (3H, s), 2.14 (3H, s), 2.24 (3H, s), 4.14 (1H, s), 6.50 (1H, s), 7.18 (2H, m), 8.35 (1H, m), 8.48 (1H, t, J = 3.2 Hz)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-5-nitro-3-phenylbenzofuran (36a)。前記 12 の合成と同様の方 法を用いて、35a から 36a を得た。収率 48%。融点 155–156 ℃ (メタノールから再結晶)。¹H NMR (CDCl₃) δ 1.04 (3H, s), 1.52 (3H, s), 1.83 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 4.15 (1H, s), 6.85 (2H, m), 7.26 (3H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-methylphenyl)-5-nitrobenzofuran (36b)。前記 12 の合成 と同様の方法を用いて、35bから 36b を得た。収率 56%。油状。¹H NMR (CDCl₃) δ 1.05 (3H, s), 1.50 (3H, s), 1.84 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 2.32 (3H, s), 4.11 (1H, s), 6.50–7.20 (4H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-5-nitro-3-(4-propylphenyl)benzofuran (36c)。前記 12 の合成と 同様の方法を用いて、**35c**から **36c** を得た。収率 66%。油状。¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.4 Hz), 1.04 (3H, s), 1.50 (3H, s), 1.61 (2H, sextet, *J* = 7.4 Hz), 1.84 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 2.55 (2H, t, *J* = 7.4 Hz), 4.12 (1H, s), 6.50–7.20 (4H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-5-nitro-3-(4-pentylphenyl)benzofuran (36d)。前記 12 の合成と 同様の方法を用いて、**35d** から **36d** を得た。収率 76%。油状。¹H NMR (CDCl₃) & 0.89 (3H, t, *J* = 6.6 Hz), 1.04 (3H, s), 1.30 (4H, m), 1.50 (3H, s), 1.59 (2H, m), 1.84 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 2.56 (2H, t, *J* = 7.8 Hz), 4.11 (1H, s), 5.50–7.20 (4H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-[4-(2-methylethyl)phenyl]-5-nitrobenzofuran (36e)。前記 12 の合成と同様の方法を用いて、35e から 36e を得た。収率 48%。融点 109–110 ℃ (メタノールか ら再結晶)。¹H NMR (CDCl₃) δ 1.04 (3H, s) 1.22 (6H, d, *J* = 6.8 Hz), 1.50 (3H, s), 1.84 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 2.87 (1H, septet, *J* = 6.8 Hz), 4.12 (1H, s), 6.60–7.20 (4H, m)。

3-(4-Fluorophenyl)-2,3-dihydro-2,2,4,6,7-pentamethyl-5-nitrobenzofuran (36f)。前記 12 の合成と 同様の方法を用いて、35f から 36f を得た。収率 66%。融点 94–95 ℃ (メタノールから再結晶)。 ¹H NMR (CDCl₃) δ 1.04 (3H, s), 1.50 (3H, s), 1.84 (3H, s), 2.18 (3H, s), 2.20 (3H, s), 4.14 (1H, s), 6.50– 7.20 (4H, m)。

3-(2,3-Dihydro-2,2,4,6,7-pentamethyl-5-nitro-3-benzofuranyl)pyridine (36g)。前記 12 の合成と同様の方法を用いて、**35g**から **36g**を得た。収率 61%。油状。¹H NMR (CDCl₃) & 1.07 (3H, s), 1.54 (3H, s), 2.19 (3H, s), 2.21 (3H, s), 4.18 (1H, s), 7.05–7.35 (2H, m), 8.25–8.60 (2H, m)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-phenyl-5-benzofuranamine (37a)。前記 14 の合成と同様の 方法を用いて、36a から 37a を得た。収率 74%。融点 131–132 ℃ (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 1.00 (3H, s), 1.48 (3H, s), 1.77 (3H, s), 2.12 (3H, s), 2.19 (3H, s), 3.10 (2H, br s), 4.11 (1H, s), 6.95 (2H, m), 7.20 (3H, m)。 *Anal.* calcd for C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98。 Found: C, 81.03; H, 8.06; N, 5.10。 **2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-methylphenyl)-5-benzofuranamine** (**37b**)。前記 14 の合成 と同様の方法を用いて、**36b** から **37b** を得た。収率 54%。融点 119–120 °C (ヘキサンから再結晶)。 ¹H NMR (CDCl₃) δ 1.00 (3H, s), 1.47 (3H, s), 1.78 (3H, s), 2.13 (3H, s), 2.20 (3H, s), 2.31 (3H, s), 3.20 (2H, br s), 4.09 (1H, s), 6.82 (2H, m), 7.10 (2H, m)。*Anal*. calcd for C₂₀H₂₅NO: C, 81.31; H, 8.53; N, 4.74。 Found: C, 81.33; H, 8.53; N, 4.75。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-propylphenyl)-5-benzofuranamine (**37c**)。前記 14 の合成 と同様の方法を用いて、**36c** から **37c** を得た。収率 66%。融点 68-69 °C (メタノールから再結晶)。 ¹H NMR (CDCl₃) δ 0.90 (3H, t, *J* = 7.2 Hz), 0.99 (3H, s), 1.47 (3H, s), 1.60 (2H, sextet, *J* = 7.2 Hz), 1.77 (3H, s), 2.12 (3H, s), 2.19 (3H, s), 2.54 (2H, t, *J* = 7.2 Hz), 3.10 (2H, br s), 4.09 (1H, s), 6.82 (2H, m), 7.03 (2H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₂₂H₂₉NO: C, 81.69; H, 9.04; N, 4.33。Found: C, 81.90; H, 9.31; N, 4.41。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(4-pentylphenyl)-5-benzofuranamine (37d)。前記 14 の合成 と同様の方法を用いて、**36d** から **37d** を得た。収率 56%。融点 67–68 °C (メタノールから再結晶)。 ¹H NMR (CDCl₃) δ 0.87 (3H, t, *J* = 6.6 Hz), 1.00 (3H, s), 1.31 (4H, m), 1.47 (3H, s), 1.58 (2H, m), 1.78 (3H, s), 2.12 (3H, s), 2.19 (3H, s), 2.55 (2H, t, *J* = 7.2 Hz), 3.20 (2H, br s), 4.09 (1H, s), 6.82 (2H, m), 7.03 (2H, d, *J* = 8.0 Hz)。*Anal*. calcd for C₂₄H₃₃NO: C, 82.00; H, 9.46; N, 3.98。Found: C, 81.98; H, 9.54; N, 3.92。

2,3-Dihydro-3-[4-(2-methylethyl)phenyl]-2,2,4,6,7-pentamethyl-5-benzofuranamine (37e)。前記 14 の合成と同様の方法を用いて、36e から 37e を得た。収率 85%。融点 134–135 ℃ (ヘキサンから 結晶化)。¹H NMR (CDCl₃) δ 1.00 (3H, s), 1.22 (6H, d, *J* = 6.8 Hz), 1.47 (3H, s), 1.78 (3H, s), 2.13 (3H, s), 2.19 (3H, s), 2.85 (1H, septet, *J* = 6.8 Hz), 3.10 (2H, br s), 4.08 (1H, s), 6.85 (2H, m), 7.07 (2H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₂₂H₂₉NO: C, 81.69; H, 9.04; N, 4.33。Found: C, 81.61; H, 8.99; N, 4.40。

3-(4-Fluorophenyl)-2,3-dihydro-2,2,4,6,7-pentamethyl-5-benzofuranamine (37f)。前記 14 の合成 と同様の方法を用いて、36f から 37f を得た。収率 70%。融点 126–127 °C (ヘキサンから結晶化)。 ¹H NMR (CDCl₃) δ 0.99 (3H, s), 1.47 (3H, s), 1.77 (3H, s), 2.12 (3H, s), 2.18 (3H, s), 3.10 (2H, br s), 4.09 (1H, s), 6.93 (4H, m)。*Anal.* calcd for C₁₉H₂₂FNO: C, 76.23; H, 7.41; N, 4.46。Found: C, 76.18; H, 7.08; N, 4.43。

2,3-Dihydro-2,2,4,6,7-pentamethyl-3-(3-pyridyl)-5-benzofuranamine (37g)。前記 14 の合成と同様 の方法を用いて、**36g** から **37g** を得た。収率 54%。融点 130–131 °C (ヘキサンから結晶化)。¹H NMR (CDCl₃) δ 1.02 (3H, s), 1.50 (3H, s), 1.77 (3H, s), 2.12 (3H, s), 2.19 (3H, s), 3.04 (2H, br s), 4.12 (1H, s), 7.16 (2H, m), 8.36 (1H, m), 8.46 (1H, t, *J* = 3.2 Hz)。*Anal.* calcd for C₁₈H₂₂N₂O: C, 76.56; H, 7.85; N, 9.92。Found: C, 76.42; H, 7.90; N, 9.93。

N-(2,3-Dihydro-2,2,4,6,7-pentamethyl-5-benzofuranyl)formamide (38a)。前記 3 の合成と同様の

方法を用いて、6 から 38a を得た。収率 93%。融点 177–179 °C (ジクロロメタン—ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.46 (3H, s), 1.48 (3H, s), 2.09–2.16 (9H, m), 2.94 (2H, s), 6.62–6.80 (1H, m), 7.97 (0.5H, d, *J* = 12.0 Hz), 8.42 (0.5H, d, *J* = 1.4 Hz)。*Anal.* calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.60。Found: C, 71.90; H, 8.16; N, 5.95。

N-(2,3-Dihydro-2,2,4,6,7-pentamethyl-5-benzofuranyl)acetamide (38b)。化合物 6 (1.0 g、 4.9 mmol) およびトリエチルアミン (0.64 g、 6.3 mmol) の THF (20 mL) 溶液に塩化アセチル (0.46 g、 5.8 mmol) を氷冷下で滴下し、混合物を 4 時間撹拌した。反応液に水を加え、クロロホルムで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄後、乾燥、濃縮した。 残渣をシリカゲルカラムクロマトグラフィー (クロロホルムーメタノール、97:3) で精製した後 ジクロロメタン—ジイソプロピルエーテルから再結晶し、38b (0.92 g、収率 76%) を得た。融点 190–191 °C。¹H NMR (CDCl₃) δ 1.46 (3H, s), 1.50 (3H, s), 1.73 (1.5H, s), 2.06 (3H, s), 2.09 (3H, s), 2.14 (3H, s), 2.21 (1.5H, s), 2.93 (2H, s), 6.58 (0.5H, br s), 6.63 (0.5H, br s)。*Anal.* calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66。Found: C, 72.81; H, 8.33; N, 5.52。

N-(2,3-Dihydro-2,2,4,6,7-pentamethyl-5-benzofuranyl)methanesulfonamide (38c)。前記 38b の合成と同様の方法を用いて、6 と塩化メタンスルホニルから 38c を得た。収率 66%。融点 159-160 °C (ジクロロメタン—ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.47 (6H, s), 2.10 (3H, s), 2.25 (3H, s), 2.28 (3H, s), 2.93 (2H, s), 3.03 (3H, s), 5.70 (1H, s)。*Anal.* calcd for C₁₄H₂₁NO₃S: C, 59.34; H, 7.47; N, 4.94。Found: C, 59.20; H, 7.32; N, 4.92。

2,3-Dihydro-*N*,2,2,4,6,7-hexamethyl-5-benzofuranamine hydrochloride (39a). 氷冷した 38a (0.93 g、 4.0 mmol) の THF (30 mL) 溶液に水素化リチウムアルミニウム (0.11 g、 3.0 mmol) を徐々に 加え、混合物を 5 時間加熱還流した。反応液を室温に戻した後に水 (0.5 mL) を徐々に加え、混 合物をろ過した。ろ液を濃縮した後残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、9:1) で精製し、39a の遊離塩基 (0.30 g) を得た。これを塩酸塩にした後エタノール-ジエチルエーテルから再結晶し、39a (0.32 g、収率 31%) を得た。融点 205–208 °C。¹H NMR (CDCl₃) δ 1.46 (6H, s), 2.08 (3H, s), 2.48 (6H, s), 2.92 (2H, s), 2.98–3.02 (3H, m), 10.57 (1H, br s)。*Anal.* calcd for C₁₄H₂₂CINO: C, 65.74; H, 8.67; N, 5.48。Found: C, 65.67; H, 8.37; N, 5.60。

N-Ethyl-2,3-dihydro-2,2,4,6,7-pentamethyl-5-benzofuranamine hydrochloride (39b)。前記 39a の 合成と同様の方法を用いて、38b から 39b を得た。収率 72%。融点 205–209 ℃ (エタノール—ジ イソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.45 (6H, s), 1.48 (3H, t, *J* = 8.4 Hz), 2.07 (3H, s), 2.47 (3H, s), 2.48 (3H, s), 2.91 (2H, s), 3.35–3.48 (2H, m), 10.53 (1H, br s)。*Anal.* calcd for C₁₅H₂₄CINO: C, 66.77; H, 8.97; N, 5.19。Found: C, 66.71; H, 8.88; N, 5.26。

2,3,5-Trimethyl-6-(2-methyl-2-propenyl)-4-phenylimino-2,5-cyclohexadien-1-one (41a)。ピリジン (7.6 mL、94 mmol) の 1,2-ジクロロエタン (40 mL) 溶液に四塩化チタン (2.6 mL、23 mmol) を滴

下し、滴下終了後、混合物をアルゴン雰囲気下にて 30 分間加熱還流した。反応液を冷却した後 2,3,5-トリメチル-6-(2-メチル-2-プロペニル)-1,4-ベンゾキノン (40) (2.4 g、12 mmol) およびアニ リン (3.4 mL、35 mmol) の 1,2-ジクロロエタン (5 mL) 溶液を加え、混合物をアルゴン雰囲気下、 90 ℃ で 2 時間撹拌した。反応液を冷却した後セライトろ過し、ろ液を濃縮した。残渣は精製す ることなく、次の反応に用いた。

4-[(4-Chlorophenyl)imino]-2,3,5-trimethyl-6-(2-methyl-2-propenyl)-2,5-cyclohexadien-1-one (41b)。 前記 41a の合成と同様の方法を用いて、40 と 4-クロロアニリンから 41b を得た。濃縮残渣をシ リカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、93:7) で精製した。収率 96%。油 状。¹H NMR (CDCl₃) δ 1.53–2.20 (12H, m), 3.21 (2H, s), 4.51 (1H, s), 4.74 (1H, s), 6.68 (2H, d, *J* = 8.8 Hz), 7.30 (2H, d, *J* = 8.8 Hz)。

2,3,5-Trimethyl-6-(2-methyl-2-propenyl)-4-(3-pyridinylimino)-2,5-cyclohexadien-1-one(41c)。前記 41b の合成と同様の方法を用いて、40 と 3-アミノピリジンから 41c を得た。収率 51%。油状。¹H NMR (CDCl₃) δ 1.70–2.10 (12H, m), 3.22 (2H, s), 4.51 (1H, s), 4.75 (1H, s), 7.12–7.18 (1H, m), 7.26–7.33 (1H, m), 8.01 (1H, d, *J* = 2.6 Hz), 8.35 (1H, dd, *J* = 1.6 Hz, 2.6 Hz)。

2,3,5-Trimethyl-6-(2-methyl-2-propenyl)-4-(phenylamino)phenol (42a)。化合物 41a の THF (10 mL) 溶液にハイドロサルファイトナトリウム (12g、69 mmol) の水 (30 mL) 溶液を加え、室温 で 30 分間撹拌した。有機層を分取した後、水層を酢酸エチルで抽出した。抽出液と有機層を合 わせ、水洗、乾燥後濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エ チル、95:5) で精製し、42a (1.4 g、40 からの収率 43%) を得た。油状。¹H NMR (CDCl₃) δ 1.80 (3H, s), 2.14 (6H, s), 2.19 (3H, s), 3.41 (2H, s), 4.69 (1H, s), 4.87 (1H, s), 5.03 (1H, s), 5.11 (1H, br s), 6.42 (2H, d, *J* = 7.4 Hz), 6.68 (1H, t, *J* = 7.4 Hz), 7.13 (2H, t, *J* = 7.4 Hz)。

4-(4-Chlorophenylamino)-2,3,5-trimethyl-6-(2-methyl-2-propenyl)phenol (42b)。前記 42a の合成 と同様の方法を用いて、41b から 42b を得た。収率 97%。油状。¹H NMR (CDCl₃) & 1.80 (3H, s), 2.11 (3H, s), 2.12 (3H, s), 2.19 (3H, s), 3.40 (2H, s), 4.68 (1H, s), 4.87 (1H, s), 5.04 (1H, s), 5.14 (1H, br s), 6.34 (2H, d, *J* = 8.8 Hz), 7.06 (2H, d, *J* = 8.8 Hz)。

2,3,5-Trimethyl-6-(2-methyl-2-propenyl)-4-(3-pyridinylamino)phenol (42c)。前記 42a の合成と同様の方法を用いて、41c から 42c を得た。収率 96%。油状。¹H NMR (CDCl₃) δ 1.80 (3H, s), 2.12 (3H, s), 2.13 (3H, s), 2.19 (3H, s), 3.41 (2H, s), 3.75 (1H, br s), 4.67 (1H, s), 4.87 (1H, s), 5.18 (1H, s), 6.56–6.63 (1H, m), 7.02 (1H, dd, *J* = 4.6 Hz, 8.2 Hz), 7.93–7.97 (2H, m)。

4-[(2,3-Dihydro-2,2-dimethyl-5-benzofuranyl)amino]-2,3,5-trimethyl-6-(2-methyl-2-

propenyl)phenol (42d)。ピリジン (7.1 mL、88 mmol) の 1,2-ジクロロエタン (40 mL) 溶液に四塩 化チタン (2.4 mL、22 mmol) を滴下し、滴下終了後、混合物をアルゴン雰囲気下 90 ℃ で 30 分 間撹拌した。反応液を冷却した後 40 (3.0 g、15 mmol) の 1,2-ジクロロエタン (5 mL) 溶液および **11d** の遊離塩基 (12 g、74 mmol) の 1,2-ジクロロエタン (20 mL) 溶液を加え、混合物をアルゴン 雰囲気下、90 ℃ で 30 分間撹拌した。反応液を冷却した後、セライトおよびクロロホルムを加え た。これをセライトろ過し、ろ液に飽和食塩水を加えた後再びセライトろ過した。ろ液を飽和食 塩水で洗浄した後、乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン 一酢酸エチル、9:1) で精製した後ジイソプロピルエーテル―ペンタンから再結晶し、**42d** (2.3 g、 収率 45%) を得た。融点 160–162 ℃。¹H NMR (CDCl₃) δ 1.44 (6H, s), 1.80 (3H, s), 2.15 (6H, s), 2.19 (3H, s), 2.90 (2H, s), 3.41 (2H, s), 4.65–5.00 (4H, m), 6.18–6.27 (2H, m), 6.53 (1H, d, *J* = 8.4 Hz)。

2,3-Dihydro-2,2,4,6,7-pentamethyl-N-phenyl-5-benzofuranamine (**43a**)。前記 **6** の合成と同様の方 法を用いて、**42a** から **43a** を得た。収率 69%。融点 148–151 °C (ジイソプロピルエーテルから再 結晶)。¹H NMR (CDCl₃) δ 1.49 (6H, s), 2.04 (3H, s), 2.10 (3H, s), 2.12 (3H, s), 2.95 (2H, s), 5.03 (1H, br s), 6.42–6.48 (2H, m), 6.64–6.72 (1H, m), 7.08–7.17 (2H, m)。*Anal.* calcd for C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98。Found: C, 80.87; H, 8.30; N, 4.89。

N-(4-Chlorophenyl)-2,3-dihydro-2,2,4,6,7-pentamethyl-5-benzofuranamine (43b)。前記 6 の合成 と同様の方法を用いて、42b から 43b を得た。収率 60%。融点 106–107 °C (ジイソプロピルエー テルーペンタンから再結晶)。¹H NMR (CDCl₃) δ 1.49 (6H, s), 2.02 (3H, s), 2.07 (3H, s), 2.12 (3H, s), 2.95 (2H, s), 5.04 (1H, br s), 6.36 (2H, d, *J* = 8.8 Hz), 7.06 (2H, d, *J* = 8.8 Hz)。*Anal.* calcd for C₁₉H₂₂CINO: C, 72.25; H, 7.02; N, 4.43。Found: C, 72.13; H, 7.23; N, 4.30。

N-(2,3-Dihydro-2,2,4,6,7-pentamethyl-5-benzofuranyl)-3-pyridinamine (43c)。前記 6 の合成と同様の方法を用いて、42c から 43c を得た。収率 68%。融点 187–188 ℃ (ジクロロメタン—ジイソ プロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.49 (6H, s), 2.03 (3H, s), 2.09 (3H, s), 2.13 (3H, s), 2.95 (2H, s), 5.10 (1H, br s), 6.58–6.65 (1H, m), 7.02 (1H, dd, *J* = 4.8 Hz, 8.4 Hz), 7.95 (1H, dd, *J* = 1.4 Hz, 4.8 Hz), 7.99 (1H, d, *J* = 2.4 Hz)。*Anal.* calcd for C₁₈H₂₂N₂O: C, 76.56; H, 7.85; N, 9.92。Found: C, 76.12; H, 7.96; N, 9.74。

2,3-Dihydro-*N*-(**2,3-dihydro-2,2-dimethyl-5-benzofuranyl**)-**2,2,4,6,7-pentamethyl-5-benzofuran**amine (**43d**)。前記 **6** の合成と同様の方法を用いて、**42d** から **43d** を得た。収率 61%。融点 147– 148 °C (ペンタンから再結晶)。¹H NMR (CDCl₃) δ 1.43 (6H, s), 1.49 (6H, s), 2.05 (3H, br s), 2.10 (3H, br s), 2.12 (3H, s), 2.90 (2H, br s), 2.95 (2H, s), 4.80 (1H, br s), 6.27 (2H, br s), 6.52 (1H, d, *J* = 8.2 Hz)。 *Anal.* calcd for C₂₃H₂₉NO₂: C, 78.60; H, 8.32; N, 3.98。Found: C, 78.45; H, 8.32; N, 3.85。

第2章第2節に関する実験

(S)-2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine dihydrochloride ((S)-24n) and (R)-2,3-dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)-

methyl]-5-benzofuranamine dihydrochloride ((R)-24n)。化合物 24n (35 g、97 mmol)のクロロホル ム (500 mL) 溶液に (S)-(+)-マンデル酸 (15 g、97 mmol) のメタノール (300 mL) 溶液を加えた後、 混合物を濃縮した。残渣にジエチルエーテル (500 mL) を加えた後析出結晶をろ取し、結晶をジ エチルエーテルで洗浄した後乾燥して 35 g の粗結晶を得た。得られた粗結晶を以下のようにし て再結晶した。すなわち粗結晶をメタノールに溶解した後 100 mL の容量まで濃縮し、ジエチル エーテル (500 mL) を加えて析出結晶をろ取、ジエチルエーテル洗浄後乾燥した。得られた結晶 (22 g) を再び同様の方法を用いて再結晶し、(S)-2,3-dihydro-2,4.6,7-tetramethyl-2-[(4-phenyl-1piperidinyl)methyl]-5-benzofuranamine (S)-mandelate (20 g、収率 40%) を得た。融点 186-190 °C。 [α]_D +57.1° (c 1.23, methanol)。イソプロパノールから再結晶したサンプルを用いて X 線結晶構造 解析を行った結果、ジヒドロベンゾフラン環2位の立体はS配置であることが明らかとなった。 測定条件および結晶学データを Table 10 に示す。得られたマンデル酸塩 (20g、39 mmol) 酢酸エ チル─0.5 N 水酸化ナトリウム水溶液に溶解し、酢酸エチル層を分取した。これを 0.5 N 水酸化 ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、炭酸ナトリウム で乾燥した後濃縮した。残渣をメタノール (140 mL) に溶解した後4 M 塩化水素酢酸エチル溶液 (23 mL) を加え、濃縮した。残渣を酢酸エチルから結晶化し、粗結晶をメタノール---酢酸エチル から再結晶して (S)-24n (14 g、収率 89%) を得た。融点 226 ℃ (分解)。 [α]_b +27.8° (c 1.05, methanol) . (S)-2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine (S)-mandelate をろ取した際のろ液をあわせて濃縮した。残渣 (28 g) を酢酸エチル-0.5 N 水酸化 ナトリウム水溶液に溶解し、酢酸エチル層を分取した。これを 0.5 N 水酸化ナトリウム水溶液、 飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、炭酸ナトリウムで乾燥した後濃縮し た。残渣 (20g) と (R)-(-)-マンデル酸 (8.4g) から (S)-2,3-dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine (S)-mandelate の合成と同様の方法を用いて、(R)-2,3dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine (R)-mandelate を得た。 収率 40%。融点 181–191 °C。[α]_D –57.0° (c 1.09, methanol)。続いて(S)-24n の合成と同様の方法を 用いて (R)-24n を得た。収率 92%。融点 226 °C (分解)。 [α]_D - 27.9° (c 1.28, methanol)。

2-Bromo-3-(methoxymethoxy)-1,4,5-trimethylbenzene (48)。tert-ブチルアミン (54 mL、0.73 mol) のトルエン (1.0 L) 溶液に臭素 (59 g、0.37 mol) を -25 °C で滴下した後、混合物を -78 °C に冷 却した。2,3,5-trimethylphenol (50 g、0.37 mol) のジクロロメタン (250 mL) 溶液を加え、撹拌し ながら混合物を室温に戻した。反応液を酢酸エチルで希釈し、チオ硫酸ナトリウム水溶液および 飽和食塩水で洗浄した後、乾燥、濃縮し、2-bromo-3,5,6-trimethylphenol (47) を粗生成物として得 た。これを DMF (100 mL) に溶解した後氷冷し、66% 水素化ナトリウム (8.2 g、0.22 mol) を窒 素気流下に加え、混合物を 15 分間撹拌した。混合物にクロロメチルメチルエーテル (17 mL、 0.22 mol) を滴下し、さらに 30 分間撹拌した。反応液を氷水に注ぎ、ヘキサンで抽出した。抽出 液を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣を蒸留し、48 (31 g、2,3,5-trimethylphenol

Empirical formula	$C_{24}H_{32}N_2O \cdot C_8H_8O_3$
Formula weight	516.68
Space group	$P2_{1}$
Lattice parameters	a = 6.348 (2) Å
	<i>b</i> = 17.706 (3) Å
	c = 12.356 (2) Å
	β = 95.33 (2) °
Calculated density	1.241 g/cm^3
Radiation	Cu-Kα (λ = 1.5418 Å)
Data collection range	$3^\circ \le 2\theta \le 120^\circ$
Scan mode	$2\theta - \omega$
Scan speed	32 °/min
Total reflections	2132
Obserbed reflections ($F \ge 3\sigma F$)	1774
R, Rw	0.049, 0.045

 Table 10. Summary of Crystal Data and Intensity Collections for (S)-2,3-dihydro-2,4,6,7-tetramethyl-2

 [(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine (S)-mandelate

からの収率 32%) を得た。沸点 94–96 °C/0.2 mmHg。¹H NMR (CDCl₃) δ 2.20 (3H, s), 2.24 (3H, s), 2,34 (3H, s), 3.66 (3H, s), 5.04 (2H, s), 6.85 (1H, s)。

4-Methylbenzenesulfonic acid (*R*)-2-hydroxy-3-[2-(methoxymethoxy)-3,4,6-trimethylphenyl]-2methylpropyl ester (49)。アルゴン雰囲気下、化合物 48 (9.6 g、37 mmol)の THF (100 mL)溶液に -78 °C で 1.7 M *n*-ブチルリチウムヘキサン溶液 (22 mL、37 mmol)を滴下し、混合物を 15 分間撹 拌した。これに (*R*)-2-methylglycidyl tosylate ⁶²⁾ (3.0 g、12 mmol、94% ee;シフト試薬による¹H NMR 分析により決定)の THF (5 mL)溶液および三フッ化ホウ素ジエチルエーテル錯体 (4.7 mL、 37 mmol)を加え、混合物を同温度でさらに 20 分間撹拌した。反応液を水に加え、酢酸エチルで 抽出した。抽出液を飽和食塩水で洗浄した後乾燥、濃縮した。残渣をシリカゲルカラムクロマト グラフィー (ヘキサン一酢酸エチル、4:1 から 3:1)で精製し、49 (5.1 g、(*R*)-2-methylglycidyl tosylate からの収率 97%)を無色油状物として得た。[α]_D²⁰ +8.7° (*c* 1.01, ethanol)。IR (KBr) 3464, 2944, 1456, 1369, 1190, 1177, 984 cm⁻¹。¹H NMR (CDCl₃) δ 1.05 (3H, s), 2.13 (3H, s), 2.20 (3H, s), 2.24 (3H, s), 2.45 (3H, s), 2.83 (1H, d, *J* = 14.2 Hz), 3.09 (1H, d, *J* = 14.2 Hz), 3.59 (3H, s), 3.85 (2H, s), 4.88 (1H, d, *J* = 5.6 Hz), 4.93 (1H, d, *J* = 5.6 Hz), 6.81 (1H, s), 7.34 (2H, d, *J* = 8.2 Hz), 7.80 (2H, d, *J* = 8.2 Hz), MS (SIMS) *m/z*: 422 (M⁺, 6), 391 (22), 361 (27), 189 (100), 149 (42).

(R)-2-[[2-(Methoxymethoxy)-3,4,6-trimethylphenyl]methyl]-2-methyloxirane (50)。化合物 49 (5.1 g、12 mmol)のメタノール (40 mL) 溶液に炭酸カリウム (1.7 g、12 mmol) を加え、混合物を室 温で 1 時間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し

た後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、 9:1) で精製し、**50** (2.8 g、収率 93%) を無色油状物として得た。 $[\alpha]_D^{20}$ -47.2° (*c* 1.02, ethanol)。IR (KBr) 2870, 1460, 1452, 1295, 1159, 1076, 1064, 1045, 981 cm⁻¹。¹H NMR (CDCl₃) δ 1.36 (3H, s), 2.15 (3H, s), 2.20 (3H, s), 2.26 (3H, s), 2.45 (1H, d, *J* = 5.2 Hz), 2.50 (1H, d, *J* = 5.2 Hz), 3.03 (1H, d, *J* = 14.6 Hz), 3.11 (1H, d, *J* = 14.6 Hz), 3.61 (3H, s), 4.91 (2H, s), 6.78 (1H, s)。¹³C NMR (CDCl₃) δ 13.2, 20.0, 20.1, 22.3, 32.6, 53.0, 56.9, 57.4, 99.6, 126.1, 126.6, 127.8, 135.7, 136.3, 155.2。MS (EI) *m/z*: 250 (M⁺, 25), 205 (10), 187 (22), 175 (100), 133 (12)。

(*S*)-2,3-Dihydro-2,4,6,7-tetramethyl-2-benzofuranmethanol (51)。化合物 50 (2.8 g、11 mmol)の THF (22 mL) 溶液を氷冷し、トリフルオロ酢酸一水 1:1 混液 (8 mL) を加えて混合物を氷冷下で 30 分間撹拌した。反応液を飽和炭酸ナトリウム水溶液に加え、酢酸エチルで抽出した。抽出液 を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘ キサン一酢酸エチル、4:1 から 3:1) で精製し、51 (1.9 g、収率 82%) を白色粉末として得た。得 られた 51 の光学純度はキラルカラム LC/MS [カラム; CHIRALCEL OD-R (4.6 mmφ × 250 mm)、 温度; 20 °C、移動層; メタノール—0.01 M 酢酸アンモニウム水溶液 (1:1)、流速; 1.0 mL/min、 51 の保持時間; 8.8 min、51 のエナンチオマーの保持時間; 7.7 min] により 93% ee と求まった。 融点 54-57 °C (ヘキサンから再結晶; 再結晶前後で光学純度は変化しなかった)。 [α]_p²⁰ +2.4 (*c* 1.01, ethanol)。IR (KBr) 3326, 2921, 1593, 1456, 1410, 1327, 1294, 1055 cm⁻¹。¹H NMR (CDCl₃) δ 1.43 (3H, s), 1.94 (1H, t, *J* = 6.8 Hz), 2.08 (3H, s), 2.15 (3H, s), 2.19 (3H, s), 2.79 (1H, d, *J* = 15.4 Hz), 3.13 (1H, d, *J* = 15.4 Hz), 3.55–3.72 (2H, m), 6.51 (1H, s)。¹³C NMR (CDCl₃) δ 11.6, 18.5, 19.3, 23.6, 37.3, 68.6, 88.0, 115.4, 122.5, 122.7, 131.3, 136.6, 157.1。MS (EI) *m/z*: 206 (M⁺, 40), 175 (100), 160 (9), 149 (14), 136 (9)。*Anal.* calcd for C₁₃H₁₈O₂: C, 75.69; H, 8.80。Found: C, 75.45; H, 8.77。

Methanesulfonic acid (*S*)-(2,3-dihydro-2,4,6,7-tetramethyl-2-benzofuranyl)methyl ester (52)。化合物 51 (1.7 g、8.3 mmol) およびトリエチルアミン (1.7 mL、12 mmol) の THF (14 mL) 溶液を氷冷し、メタンスルホニルクロリド (0.71 mL、9.1 mmol) を滴下した後、混合物を氷冷下で 15 分間 撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄した後、乾燥、 濃縮し、52 (2.3 g、収率 98%) を白色粉末として得た。融点 70–71 °C。[α]_D²⁰ +3.1 (*c* 1.00, ethanol)。 IR (KBr) 2940, 1460, 1366, 1175, 1001, 972, 828 cm⁻¹。¹H NMR (CDCl₃) δ 1.51 (3H, s), 2.05 (3H, s), 2.15 (3H, s), 2.19 (3H, s), 2.88 (1H, d, *J* = 15.6 Hz), 3.02 (3H, s), 3.13 (1H, d, *J* = 15.6 Hz), 4.26 (2H, s), 6.52 (1H, s)。MS (EI) *m/z*: 284 (M⁺, 52), 187 (19), 175 (100), 159 (11), 147 (13)。*Anal.* calcd for C₁₄H₂₀O₂S: C, 59.13; H, 7.09; S, 11.28。Found: C, 58.86; H, 7.00; S, 11.26。

(S)-1-[(2,3-Dihydro-2,4,6,7-tetramethyl-2-benzofuranyl)methyl]-4-phenylpiperidine hydrochloride (53)。化合物 52 (1.0 g、3.5 mmol) および 4-フェニルピペリジン (1.1 g、7.0 mmol) の *N*,*N*-ジメチ ルアセトアミド (5 mL) 溶液に炭酸カリウム (0.97 g、7.0 mmol) を加え、混合物をアルゴン雰囲 気下、180 ℃ で 5 時間撹拌した。反応液を冷却した後に水で希釈し、酢酸エチルで抽出した。抽 出液を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、19:1 から 9:1) で精製した。得られた **52** の遊離塩基 (0.97 g) をエタノ ール一酢酸エチルに溶解し、4 M塩化水素酢酸エチル溶液を加えた。混合物を濃縮し、残渣をエ タノールージエチルエーテルから再結晶し、**53** (0.98 g、**52** からの収率 72%) を得た。融点 178-182 °C。[α]_D²⁰ +13.1 (*c* 1.00, ethanol)。 IR (KBr) 2934, 2483, 1456, 1429, 1406, 1283, 1073 cm⁻¹。¹H NMR (DMSO-*d*₆) δ 1.63 (3H, s), 1.85–2.42 (4H, m), 2.01 (3H, s), 2.13 (3H, s), 2.14 (3H, s), 2.73–3.01 (2H, m), 3.17–3.68 (6H, m), 3.82–3.91 (1H, m), 6.53 (1H, s), 7.22–7.36 (5H, m), 10.53 (1H, br s)。 MS (SIMS) *m/z*: 350 (MH⁺ of free base, 97), 174 (100), 91 (9), 70 (13)。*Anal.* calcd for C₂₄H₃₂ClNO: C, 74.68; H, 8.36; Cl, 9.19; N, 3.63。Found: C, 74.46; H, 8.37; Cl, 9.18; N, 3.91。

(*S*)-1-[[2,3-Dihydro-2,4,6,7-tetramethyl-5-[(4-nitrophenyl)azo]-2-benzofuranyl]methyl]-4-phenylpiperidine (54)。4-ニトロアニリン (0.16 g、1.1 mmol) を 2 N 塩酸 (3 mL) に加熱溶解し、得られ た溶液を氷冷した。これに亜硝酸ナトリウム (79 mg、1.1 mmol) の水 (0.5 mL) 溶液を滴下し、 混合物を 15 分間撹拌した。得られたジアゾニウム塩を 53 (0.40 g、1.0 mmol) の酢酸 (3 mL) 溶 液に加え、混合物を室温で 15 時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液に注ぎ、 酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄した後、乾燥、濃縮し、54 (0.55 g) を得た。 このものはこれ以上精製せずに次の反応に用いた。

(S)-2,3-Dihydro-2,4,6,7-tetramethyl-2-[(4-phenyl-1-piperidinyl)methyl]-5-benzofuranamine dihydrochloride ((S)-24n)。化合物 54 (0.55 g) のエタノール (20 mL) に Raney-nickel (0.6 g) を加 え、混合物を水素 (5 kgf/cm²) 雰囲気下、室温で 2 時間撹拌した。反応液をろ過した後、ろ液を 濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン-酢酸エチル、3:7 から 1:1) で精製し (S)-24n の遊離塩基を得た (0.30 g)。この (S)-24n 遊離塩基の光学純度はキラルカラム LC/MS [カラム; CHIRALCEL OD-R (4.6 mmø × 250 mm)、温度; 20 ℃、移動層; アセトニトリ ルーリン酸緩衝液 (pH 7) (1:1)、流速; 1.0 mL/min、(S)-24n の保持時間; 21.6 min、エナンチオマ - ((R)-24n)の保持時間; 23.4 min]により 99.4% ee と求まった。得られた (S)-24n 遊離塩基を エタノールに溶解し4M塩化水素酢酸エチル溶液を加えた後、濃縮した。残渣をエタノール-ジ エチルエーテルから再結晶し、(S)-24n (0.32g、53からの収率70%)を得た。化合物 (S)-24nの光 学純度は遊離塩基の分析と同様の条件を用いたキラルカラム LC/MS により 99.8% ee と求まった。 融点 226--230 °C。 [a]p²⁰ +27.5 (c 0.99, methanol)。 IR (KBr) 2946, 2789, 1524, 1454, 1422, 1258, 1080 cm⁻¹。¹H NMR (DMSO-d₆) δ 1.63 (3H, s), 1.82–2.43 (4H, m), 2.07 (3H, s), 2.23 (3H, s), 2.25 (3H, s), 2.74-2.86 (1H, m), 3.01-3.60 (7H, m), 3.78-3.86 (1H, m), 7.20-7.39 (5H, m), 9.93 (3H, br s), 10.62 (1H, br s). ¹³C NMR (DMSO-*d*₆) δ 12.0, 14.2, 14.9, 25.6, 29.1, 29.4, 53.5, 54.3, 62.7, 85.5, 116.2, 122.0, 123.0, 125.8, 126.4, 126.5, 128.4, 130.6, 144.4, 154.5 MS (SIMS) m/z: 365 (MH⁺ of the free base, 96), 174 (46). Anal. calcd for C₂₄H₃₄Cl₂N₂O: C, 65.90; H, 7.83; Cl, 16.21; N, 6.40. Found: C, 65.72; H, 7.85; Cl, 15.95; N, 6.31.

過酸化脂質生成抑制作用。ラット肝臓ミクロソーム (S-9) [0.3 mg protein/40 mM Tris-malate buffer (pH 7.4) 2.4 mL] (2.4 mL) に被験化合物のジメチルスルホキシド溶液 (25 μL)、0.25 mM 塩 化第一鉄水溶液と NADPH (3 mM) の 1:1 混液 (0.1 mL) を加えてよく振り混ぜた。37 °C で 1 時 間放置後、0.2% ブチル化ヒドロキシトルエンエタノール溶液 (0.125 mL) を加えてよく振り混ぜ た。50 mM 2-チオバルビツール酸水溶液と 20% トリクロロ酢酸水溶液の 2:1 混液 (2.3 mL) を加 えてよく振り混ぜた後、95 °C で 15 分間放置した。氷水上で 5 分間以上放置した後、2400 回転 で 10 分間遠心分離し、上清液の波長 532 nm における吸光度を測定した。なお、ここで被験化合 物の代わりにジメチルスルホキシドだけを加えたものをコントロールとした。また被験化合物の ジメチルスルホキシド溶液 (25 mL) に 0.2% ブチル化ヒドロキシトルエンエタノール溶液 (0.125 mL)、ラット肝臓ミクロソーム (S-9) [0.3 mg protein/40 mM Tris-malate buffer (pH 7.4) 2.4 mL] (2.4 mL)、水 (0.1 mL) および 50 mM 2-チオバルビツール酸水溶液と 20% トリクロロ酢酸水 溶液の 2:1 混液 (2.3 mL) をこの順序で加え、以下上記操作方法に準じて操作したものを被験化 合物のブランク、被験化合物の代わりにジメチルスルホキシド (25 μL) だけを加えたものをコン トロールのブランクとした。各濃度における阻害率および IC₅₀ 値は次の式に従って算出した。

阻害率 (%) = (1-(Esa-Esb)/(Eco-Ecb))×100

(Esa:被験化合物の A₅₃₂、Esb:被験化合物のブランクの A₅₃₂、Eco:コントロールの A₅₃₂、
 Ecb:コントロールのブランクの A₅₃₂)

 $IC_{50} = (50 (X_2 - X_1) - (X_2 Y_1 - X_1 Y_2)) / (Y_2 - Y_1)$

(Y₁; 50% 未満の阻害率、X₁: Y₁での濃度、Y₂: 50% 以上の阻害率、X₂: Y₂での濃度)

マウス一塩化第一鉄ーit 法を用いた中枢神経障害抑制作用。1 群 10 匹の 5 週齢雄性 Slc:ICR マ ウスを使用した。マウスくも膜下腔内投与 (intrathecal injection; it 投与) 法は土居らの方法⁸³⁾に 準じて行った。すなわち 50 mM の濃度で塩化第一鉄を溶解した生理食塩水 (5 µL) をマウス第六 腰髄から第一仙髄のくも膜下腔内に注入した後、15 分から 1 時間までの行動変化を Table 11 に示 す基準に従ってスコアリングした。水溶性の被験化合物は蒸留水に、また水溶性の低い被験化合 物は 0.5% アラビアゴムに懸濁させ、塩化第一鉄投与 30 分前に経口投与した。塩化第一鉄は it 投与開始直前に生理食塩水に溶解した。以上の基準で評価した点数を基に抑制率を算出した。な お、ID₅₀ 値は用量反応曲線の一次回帰直線から求めた。

Table 11.	マウス一塩化鈴	§─鉄─it 法にお	らける行動評価と評点
-----------	---------	------------	------------

評点	行動変化
0	正常
1	下肢、下腹部をしきりに噛む
2	以下の3つの反応のいずれかが認められる
	a) 激しく、時には転げ回りながら下半身を噛む
	b)外部刺激に対する過敏反応が認められ、攻撃的になる
	c)振せんが起こる
3	間代性けいれんが認められる
4	強直性けいれんが認められる、もしくは片側または両側肢の麻痺が認められる
5	死亡する

第3章第3節に関する実験

メタンフェタミン投与によるマウス自発運動亢進に対する抑制作用(ドーパミン遊離抑制作 用)。5 週齢(体重 25-35 g)の雄性ICR マウスを 90分間環境に慣らした後、5% アラビアゴムに 懸濁した各用量の被検体を 20 mL/kg の容量で腹腔内投与した。投与 30分後に生理食塩水あるい はメタンフェタミン(1 mg/kg)を 20 mL/kg の容量で同様に腹腔内投与した。メタンフェタミン 投与後から 10分間隔で計 9 回、合計 90分経過後まで自発運動の運動量を測定した。また一部の 実験では、メタンフェタミンの代わりにアポモルフィン(1 mg/kg)の皮下投与を用いて自発運動 亢進を誘発した。生理食塩水投与対照群と薬物投与群間の生存率における差の検定には、 Student's *t*-test (両側検定)を用いた。

第3章第4節に関する実験

一過性脳虚血ラットの死亡率改善作用。一過性脳虚血モデルラットの作製は、Pulsimelli らの 方法⁸⁴⁾に準じた。8週齢の雄性 Wistar ラットをペントバルビタールナトリウム (35 mg/kg, ip) 麻 酔下でラット用脳定位固定装置に固定し、背側頸部を切開して第一頸椎を露出した。第一頸椎の 両端にある alar foramina に双極性凝固器のピンセットの先端を刺入して、脳底部へ上行している 椎骨動脈を両側性に電気焼灼して切断し、その後皮膚を縫合した。続いてラットを背位に固定し、 腹側頸部の皮膚を切開して両側総頸動脈を周囲の組織から分離し、糸を輪状にかけた後皮膚を縫 合した。手術終了後、ラットは個別ゲージへ移した。椎骨動脈焼灼手術 24 時間後において麻酔 より完全に覚醒し、行動上異常が認められないラットを実験に供した。この方法によって椎骨動 脈を焼灼した後、翌日ハロタン軽麻酔下にてラットを背位に固定し、腹側頸部の皮膚を開き両側 総頸動脈を露出し、両側総頸動脈を動脈クレンメにより同時閉塞し、固定を解きプラスチック製 観察ケージに静置した。虚血は 45 分間施し、クレンメを除去した。脳虚血中に正向反射が認め られた例については、実験群から除外した。薬物または生理食塩水は 45 分間の虚血終了直後、2 時間後および 24 時間後の計 3 回腹腔内に投与した。生死の確認は虚血一再灌流 1、3、5、7、10 および 14 日後に実施した。生理食塩水投与対照群と薬物投与群間の生存率における差の検定に は、Fisher の直接確立計算法 (両側検定) を用いた。

一側線条体破壊ラットの機能障害改善作用。10-11 週齢の雄性 Wistar 系 (Jcl) ラットをハロタ ン軽麻酔下、脳定位固定装置 (David Kopf) に固定した。線条体上方の頭蓋に歯科用ドリルで小 穴を穿ち、Pellegrino & Cushman のラット脳図譜⁸⁵⁾ に従い右側線条体 (A/P +2.5、L/R +2.8、D 6.5) に尖端角が約 90°、直径 1.5 mm の硝子棒を刺入し機械的損傷を与え、1 分間放置した後除去 した。生理食塩水に溶解した被検体は、損傷直後および 2 時間後の 2 回それぞれ 2 mL/kg の容量 で腹腔内に投与した。また、硝子棒を刺入しない以外は損傷群と全く同様の処置をした偽損傷 (Sham) ラットも作製した。本頭部貫通外傷モデルにおける機能変化の指標としては、片側線条 体に障害を有する動物において認められるアポモルフィン (塩酸塩、0.5 mg/kg, sc) によって誘発 される旋回運動を用いた。アポモルフィンにより誘発された旋回は、コンピューターに接続した ロートメーターにより自動計数し、投与直後より 30 分間の旋回回数を個体の値とした。測定は 損傷 3、7 および 14 日後に実施した。生理食塩水投与対照群と薬物投与群とのアポモルフィン 誘発旋回回数における差は、2-way ANOVA (両側検定) で検定した後、各時点で Dunnett's multiple range test (両側検定) を用いて解析した。

第4章第1節に関する実験

(6,7,8,9-Tetrahydro-3-methoxy-5*H*-benzocyclohepten-5-ylidene)acetonitrile (56a)。後述する 56c の合成と同様の方法を用いて、6,7,8,9-tetrahydro-3-methoxy-5*H*-benzocyclohepten-5-one (55a)⁸⁶⁾から 56a を異性体混合物として得た。収率 95%。このものはこれ以上精製せずに次の反応に用いた。

(3,4-Dihydro-7-methoxy-1(2H)-naphthalenylidene)acetonitrile (56b)。後述する 56c の合成と同様 の方法を用いて、3,4-dihydro-7-methoxy-1(2H)-naphthalenone (55b) から 56b を異性体混合物とし て得た。収率 98%。このものはこれ以上精製せずに次の反応に用いた。

(*E*)-(2,3-Dihydro-6-methoxy-1*H*-inden-1-ylidene)acetonitrile ((*E*)-56c) and (*Z*)-(2,3-dihydro-6-methoxy-1*H*-inden-1-ylidene)acetonitrile ((*Z*)-56c)。Method A。シアノメチルホスホン酸ジエチル (9.4 g、53 mmol) の THF (60 mL) 溶液に 66% 水素化ナトリウム (1.9 g、53 mmol) を加え、混合 物を室温で 30 分間撹拌した。混合物を氷冷した後 2,3-dihydro-6-methoxy-1*H*-inden-1-one (55c) (7.9 g、48 mmol) の THF (40 mL) 懸濁液を加え、混合物を室温でさらに 1 時間撹拌した。反応液を水 に注ぎ、酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄した後、乾燥、濃縮した。 残渣をヘキサン—酢酸エチルから再結晶し、(*E*)-56c (4.9 g、収率 55%) を得た。融点 95–96 °C。
¹H NMR (CDCl₃) δ 3.01-3.18 (4H, m), 3.83 (3H, s), 5.61 (1H, t, *J* = 2.4 Hz), 6.96-7.03 (2H, m), 7.27 (1H, d, *J* = 8.8 Hz)。再結晶母液を濃縮した後、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、23:2) で精製し、(*Z*)-**56c** (1.3 g、収率 15%) を得た。融点 68-69 °C (ヘキサンー酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 2.97 (4H, s), 3.86 (3H, s), 5.31 (1H, s), 7.00 (1H, dd, *J* = 2.6 Hz, 8.4 Hz), 7.24 (1H, d, *J* = 8.4 Hz), 7.86 (1H, d, *J* = 2.6 Hz)。さらに溶出を続け、(*E*)-**56c** (1.7 g、収率 18%) を得た。

(*E*)-(5-Bromo-2,3-dihydro-6-methoxy-7-methyl-1*H*-inden-1-ylidene)acetonitrile ((*E*)-56d)。前記 56cの合成と同様の方法を用いて、5-bromo-2,3-dihydro-6-methoxy-7-methyl-1*H*-inden-1-one (55d)⁸⁷⁾ から (*E*)-56d を得た。収率 34%。融点 126–128 °C (酢酸エチルージイソプロピルエーテルから再 結晶)。¹H NMR (CDCl₃) δ 2.45 (s, 3H), 2.99–3.07 (2H, m), 3.10–3.20 (2H, m), 3.78 (3H, s), 5.69–5.72 (1H, m), 7.43 (1H, s)。

(*E*)-(7-Bromo-2,3-dihydro-6-methoxy-5-methyl-1*H*-inden-1-ylidene)acetonitrile ((*E*)-56e)。前記 56cの合成と同様の方法を用いて、7-bromo-2,3-dihydro-6-methoxy-5-methyl-1*H*-inden-1-one (55e)⁸⁷⁾ から (*E*)-56d を得た。収率 73%。融点 124–125 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.37 (3H, s), 2.98–3.05 (2H, m), 3.10–3.20 (2H, m), 3.80 (3H, s), 6.70 (1H, t, *J* = 2.4 Hz), 7.13 (1H, s)。

(*E*)-(2,3-Dihydro-6,7-dimethoxy-1*H*-inden-1-ylidene)acetonitrile ((*E*)-56f)。前記 56c の合成と同様の方法を用いて、2,3-dihydro-6,7-dimethoxy-1*H*-inden-1-one (55f)⁸⁸⁾から (*E*)-56f を得た。収率81%。融点 111–113 °C (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 2.95–3.15 (4H, m), 3.87 (3H, s), 3.91 (3H, s), 6.24 (1H, t, *J* = 2.4 Hz), 6.95 (1H, d, *J* = 8.6 Hz), 7.00 (1H, d, *J* = 8.6 Hz)。

(*E*)-(2,3-Dihydro-5,6-dimethoxy-1*H*-inden-1-ylidene)acetonitrile (56g)。前記 56c の合成と同様の 方法を用いて、2,3-dihydro-5,6-dimethoxy-1*H*-inden-1-one (55g) から 56g を異性体混合物として得 た。収率 32%。本化合物はこれ以上精製せずに次の反応に用いた。

(2,3-Dihydro-1*H*-inden-1-ylidene)acetonitrile (56h)。前記 56c の合成と同様の方法を用いて、 2,3-dihydro-1*H*-inden-1-one (55h) から 56h を得た。収率 76%。異性体混合物は分離せずに次の反応に用いた。

(E)-(2,3-Dihydro-6-methoxy-2-phenyl-1*H*-inden-1-ylidene)acetonitrile ((E)-56i)。Method B。アルゴン雰囲気下、1,1,1,3,3,3-ヘキサメチルジシラザン (2.9 mL、14 mmol)の THF (80 mL)溶液に 1.6 M n-ブチルリチウムヘキサン溶液 (8.7 mL、14 mmol)を -78 °C で滴下し、混合物を同温度で 15 分間撹拌した。これにアセトニトリル (0.65 mL、12 mmol)を滴下し混合物を同温度で 20 分間撹拌した後、2,3-dihydro-6-methoxy-2-phenyl-1*H*-inden-1-one (55i)⁸⁹⁾ (2.7 g、11 mmol)の THF (30 mL)溶液を滴下した。混合物を同温度で 1 時間撹拌した後に水を加え、酢酸エチルで抽出した。 抽出液を水および飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をトルエン (100 mL) に溶解

した後 10-カンファースルホン酸 (0.5 g) を加え、水分分離装置を装着して 1 時間加熱還流した。 冷却後、反応液に水を加え酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄した後、 乾燥、濃縮した。残渣を酢酸エチル─ジイソプロピルエーテルから結晶化し、原料 (55i) (1.0 g) を回収した。結晶化母液を濃縮し、残渣を再び酢酸エチル─ジイソプロピルエーテルから結晶化 して、(*E*)-56i (0.47 g、収率 16%) を得た。融点 112–114 ℃。¹H NMR (CDCl₃) δ 3.03 (1H, d, *J* = 17.0 Hz), 3.59 (1H, dd, *J* = 8.2 Hz, 17.0 Hz), 3.86 (3H, s), 4.49 (1H, d, *J* = 8.2 Hz), 5.69 (1H, d, *J* = 2.6 Hz), 6.95–7.32 (8H, m)。

[2,3-Dihydro-6-methoxy-2-(phenylmethyl)-1*H*-inden-1-ylidene]acetonitrile (56j)。前記 56i の合成 と同様の方法を用いて、2,3-dihydro-6-methoxy-2-(phenylmethyl)-1*H*-inden-1-one (55j)⁹⁰⁾から 56j を 得た。収率 78%。異性体混合物は分離せずに次の反応に用いた。

2,3-Dihydro-6-methoxy-1*H*-inden-1-ethanamine (57c) and 57c hydrochloride。Method C。化合物 (*E*)-56c (4.0 g、22 mmol) のエタノール(80 mL) 溶液に Raney-nickel (4.0 g) および4 M アンモニ アエタノール溶液 (40 mL) を加え、混合物を水素雰囲気下 (0.4 MPa)、室温で5時間撹拌した。 反応液をろ過し、ろ液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー (クロロホルム ーメタノール、97:3 からクロロホルム—メタノール—トリエチルアミン、90:7:3) で精製し、57c (3.3 g、収率 80%) を油状物として得た。¹H NMR (CDCl₃) & 1.50–1.76 (2H, m), 1.90–2.08 (1H, m), 1.22–1.34 (1H, m), 2.65–3.20 (5H, m), 3.79 (3H, s), 6.71 (1H, dd, *J* = 2.6 Hz, 8.2 Hz), 6.76 (1H, br s), 7.12 (1H, d, *J* = 8.2 Hz), hidden (2H)。化合物 57c の一部と4 M 塩化水素エタノール溶液から 57c 塩酸塩 を得た。融点 147–148 °C (エタノール—ジエチルエーテルから再結晶)。¹H NMR (DMSO-*d*₆) & 1.57–1.88 (2H, m), 2.01–2.36 (2H, m), 2.62–2.92 (4H, m), 3.07–3.23 (1H, m), 3.73 (3H, s), 6.68–6.78 (2H, m), 7.12 (1H, d, *J* = 8.2 Hz), 8.14 (1H, br s)。

2,3-Dihydro-6,7-dimethoxy-1*H***-inden-1-ethanamine (57f)**。後述する **60a** の合成と同様の方法を 用いて、(*E*)-**58f** から **57f** を得た。定量的。このものは精製することなく次の反応に用いた。

2,3-Dihydro-5,6-dimethoxy-1*H***-inden-1-ethanamine hydrochloride** (57g)。前記 57c の合成と同様 の方法を用いて、56g から 57g を得た。¹H NMR (CDCl₃) δ 1.59–1.97 (2H, m), 2.18–2.40 (2H, m), 2.77–2.86 (2H, m), 3.05 (2H, t, *J* = 8.0 Hz), 3.18 (1H, br s), 3.84 (3H, s), 3.85 (3H, s), 6.73 (1H, s), 6.75 (1H, s), hidden (2H)。化合物 57g の遊離塩基を 4 M 塩化水素酢酸エチル溶液で塩酸塩にした後、 酢酸エチル—ジイソプロピルエーテルから再結晶し、57g を得た。化合物 56g からの収率 44%。 融点 175–179 ℃ (分解)。

(*E*)-2-(6,7,8,9-Tetrahydro-3-methoxy-5*H*-benzocyclohepten-5-ylidene)ethanamine ((*E*)-58a)。後述 する (*E*)-58c の合成と同様の方法を用いて、56a から (*E*)-58a を得た [粗生成物はシリカゲルカ ラムクロマトグラフィー (クロロホルムーメタノールートリエチルアミン、90:8:2) で精製した]。 収率 74%。油状。¹H NMR (CDCl₃) δ 1.60–1.75 (4H, m), 2.33–2.41 (2H, m), 2.61–2.72 (2H, m), 3.47 (2H, d, J = 7.0 Hz), 3.79 (3H, s), 5.53 (1H, t, J = 6.6 Hz), 6.66-6.75 (1H, m), 6.96-7.02 (1H, m), 7.14-7.17 (1H, m), hidden (2H).

2-(3,4-Dihydro-7-methoxy-1(2H)-naphthalenylidene)ethanamine (58b)。後述する (*E*)-58c の合成 と同様の方法を用いて、56b から 58b を得た。収率 78%。油状。得られた化合物は精製すること なく次の反応に用いた。

(E)-2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-ylidene)ethanamine ((E)-58c)。 Method D。 化合物 (E)-56c (2.0 g、11 mmol)のエタノール (20 mL)溶液に Raney-cobalt (2.0 g)および4 M アンモニ アエタノール溶液 (10 mL)を加え、混合物を水素雰囲気下 (0.4 MPa)、40 °C で6時間撹拌した。 反応液をろ過した後ろ液を濃縮し、(E)-58c (2.0 g、収率 96%)を油状物として得た。¹H NMR (CDCl₃) δ 1.38 (2H, br s), 2.70–2.80 (2H, m), 2.89–2.98 (2H, m), 3.48 (2H, d, *J* = 7.0 Hz), 3.81 (3H, s), 5.92–6.01 (1H, m), 6.78 (1H, dd, *J* = 2.4 Hz, 8.2 Hz), 6.97 (1H, d, *J* = 2.4 Hz), 7.14 (1H, d, *J* = 8.2 Hz)。

(Z)-2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-ylidene)ethanamine ((Z)-58c)。前記 (E)-58c の合成と 同様の方法を用いて、(Z)-56c から (Z)-58c を得た。定量的。油状。得られた化合物は精製するこ となく次の反応に用いた。

(*E*)-2-(5-Bromo-2,3-dihydro-6-methoxy-7-methyl-1*H*-inden-1-ylidene)ethanamine ((*E*)-58d)。前記 (*E*)-58c の合成と同様の方法を用いて、(*E*)-56d から (*E*)-58d を得た。収率 98%。油状。¹H NMR (CDCl₃) δ 2.47 (3H, s), 2.70–2.80 (2H, m), 2.85–2.93 (2H, m), 3.50 (2H, d, *J* = 7.0 Hz), 3.76 (3H, s), 6.00– 6.08 (1H, m), 7.29 (1H, s), hidden (2H)。

(*E*)-2-(7-Bromo-2,3-dihydro-6-methoxy-5-methyl-1*H*-inden-1-ylidene)ethanamine ((*E*)-58e)。前記 (*E*)-58c の合成と同様の方法を用いて、(*E*)-56e から (*E*)-58e を得た。収率 96%。油状。¹H NMR (CDCl₃) δ 2.31 (3H, s), 2.73–2.82 (2H, m), 2.85–2.96 (2H, m), 3.50 (2H, d, *J* = 6.8 Hz), 3.78 (3H, s), 6.90– 7.00 (2H, m), hidden (2H)。

(*E*)-2-(2,3-Dihydro-1*H*-inden-1-ylidene)ethanamine ((*E*)-58h)。前記 (*E*)-58c の合成と同様の方法 を用いて、56h から (*E*)-58h を得た [粗生成物はシリカゲルカラムクロマトグラフィー (クロロ ホルム—メタノール—トリエチルアミン、88:10:2) で精製した]。収率 47%。油状。¹H NMR (CDCl₃) δ 2.70–2.82 (2H, m), 2.96–3.05 (2H, m), 3.48 (2H, d, *J* = 7.0 Hz), 5.96–6.07 (1H, m), 7.16–7.30 (3H, m), 7.42–7.51 (1H, m), hidden (2H)。

2-(2,3-Dihydro-6-methoxy-2-(phenylmethyl)-1*H*-inden-1-ylidene)ethanamine (58j)。前記 (*E*)-58c の合成と同様の方法を用いて、56j から 58j を得た。収率 69%。油状。¹H NMR (DMSO-*d*₆) δ 2.32–3.30 (9H, m), 3.76 (3H, s), 5.97 (1H, t, *J* = 6.8 Hz), 6.75 (1H, dd, *J* = 2.4 Hz, 8.2 Hz), 7.01 (1H, d, *J* = 2.4 Hz), 7.08–7.40 (6H, m)。

5-Methoxy-1H-inden-3-ethanamine (59c)。後述する 59j の合成と同様の方法を用いて、(E)-58c

から **59c** を得た。収率 73%。融点 179–181 °C (エタノールから再結晶)。¹H NMR (DMSO-*d*₆) δ 2.80–2.93 (2H, m), 2.98–3.20 (2H, m), 3.28 (2H, s), 3.80 (3H, s), 6.43 (1H, s), 6.78 (1H, dd, *J* = 2.2 Hz, 8.1 Hz), 7.04 (1H, d, *J* = 2.2 Hz), 7.36 (1H, d, *J* = 8.1 Hz), 8.17 (2H, br s)。

5-Methoxy-2-phenyl-1*H***-inden-3-ethanamine hydrochloride (59i)**。化合物 (*E*)**-56i** のシアノ基を 前記 (*E*)**-58c** の合成と同様の方法を用いて還元した後 4 M 塩化水素エタノールで処理し、**59i** を 得た。収率 58%。非晶質。得られた化合物は精製することなく次の反応に用いた。

5-Methoxy-2-(phenylmethyl)-1*H*-inden-3-ethanamine hydrochloride (59j)。Method E。化合物 58j (6.4 g、23 mmol)の4 M 塩化水素エタノール (60 mL) 溶液を 70 °C で 13 時間撹拌した。冷 却後、析出結晶をろ取した後ジエチルエーテルで洗浄、乾燥し、59j (1.8 g、収率 24%) を得た。 ろ液を濃縮後、エタノール―ジエチルエーテルから再結晶し、さらに 59j (3.6 g、収率 50%) を得 た。融点 217–219 °C。¹H NMR (DMSO-*d*₆) δ 2.96 (4H, br s), 3.15 (2H, s), 3.79 (3H, s), 3.82 (2H, s), 6.68 (1H, dd, *J* = 2.2 Hz, 8.1 Hz), 7.06 (1H, d, *J* = 2.2 Hz), 7.15–7.40 (6H, m), 8.13 (2H, br s)。

2,2,2-Trifluoro-N-[2-(6,7,8,9-tetrahydro-3-methoxy-5*H*-benzocyclohepten-5-yl)ethyl]acetamide (60a)。Method H。化合物 (*E*)-61c (1.5 g, 4.8 mmol) のエタノール (30 mL) に 5% パラジウム炭 素 (0.40 g、50% 含水品)を加え、混合物を水素雰囲気下、室温で 3 時間撹拌した。反応液をろ 過し、ろ液を濃縮した。残渣をジイソプロピルエーテル—へキサンから結晶化し、60a (1.5 g、収 率 97%)を得た。融点 77–78 °C。¹H NMR (CDCl₃) δ 1.65–1.96 (7H, m), 2.08–2.25 (1H, m), 2.72–2.89 (3H, m), 3.22–3.38 (1H, m), 3.40–3.60 (1H, m), 3.78 (3H, s), 6.18 (1H, br s), 6.61–6.68 (2H, m), 7.02 (1H, t, *J* = 8.0 Hz)。*Anal.* calcd for C₁₆H₂₀F₃NO₂: C, 60.94; H, 6.39; N, 4.44。Found: C, 60.73; H, 6.37; N, 4.59。

2,2,2-Trifluoro-*N*-[**2-(1,2,3,4-tetrahydro-7-methoxy-1-naphthalenyl)ethyl]acetamide (60b)**。前記 60a の合成と同様の方法を用いて、(*E*)-61b から 60b を得た。収率 86%。油状。¹H NMR (CDCl₃) δ 1.60–2.10 (6H, m), 2.68 (2H, t, *J* = 5.1 Hz), 2.80 (1H, m), 3.36 (2H, m), 3.78 (3H, s), 5.50 (1H, br s), 6.64–6.72 (2H, m), 6.98 (1H, d, *J* = 9.2 Hz)。*Anal.* calcd for C₁₅H₁₈F₃NO₂: C, 59.79; H, 6.02; N, 4.65。 Found: C, 60.09; H, 6.06; N, 4.40。

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]acetamide (60c)。Method G。化合物 57c 塩酸 塩 (16 g、71 mmol) の THF (100 mL) 溶液に 1 N 水酸化ナトリウム水溶液 (180 mL) を加えた。 この混合物に無水酢酸 (8.7 g、85 mmol) を氷冷下で激しく撹拌しながら加え、混合物を 15 分間 撹拌した。反応液を酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄した後、乾燥、濃縮した。 残渣を酢酸エチルーヘキサンから再結晶し、60c (16 g、収率 94%) を得た。融点 80-81 °C。¹H NMR (CDCl₃) δ 1.50-1.80 (2H, m), 1.98 (3H, s), 1.99-2.14 (1H, m), 2.21-2.40 (1H, m), 2.66-2.94 (2H, m), 3.03-3.17 (1H, m), 3.38 (2H, dd, *J* = 7.4 Hz, 13.2 Hz), 3.78 (3H, s), 5.53 (1H, br s), 6.68-6.75 (2H, m), 7.11 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00。Found: C, 72.08; H, 8.25; N, 6.12.

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide (60d)。前記 60c の合成と同様の 方法を用いて、57c と塩化プロピオニルから 60d を得た。収率 60%。融点 76–77 °C (ジイソプロ ピルエーテル—ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.8 Hz), 1.50–1.80 (2H, m), 1.97–2.40 (2H, m), 2.19 (2H, q, *J* = 7.8 Hz), 2.68–2.95 (2H, m), 3.04–3.18 (1H, m), 3.33–3.45 (2H, m), 3.79 (3H, s), 5.46 (1H, br s), 6.68–6.76 (2H, m), 7.11 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66。Found: C, 72.82; H, 8.42; N, 5.62。

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]butanamide (60e)。前記 60c の合成と同様の方 法を用いて、57c と塩化ブチリルから 60e を得た。収率 77%。融点 73-74 °C (ジイソプロピルエ ーテルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 0.95 (3H, t, *J* = 7.2 Hz), 1.50-1.80 (4H, m), 1.96-2.12 (1H, m), 2.14 (2H, t, *J* = 7.6 Hz), 2.22-2.40 (1H, m), 2.68-2.94 (2H, m), 3.03-3.18 (1H, m), 3.39 (2H, dd, *J* = 7.2 Hz, 13.6 Hz), 3.79 (3H, s), 5.46 (1H, br s), 6.68-6.75 (2H, m), 7.11 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₆H₂₃NO₂: C, 73.53; H, 8.87; N, 5.36。Found: C, 73.36; H, 8.59; N, 5.44。

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]pentanamide (60f)。後述する (*E*)-61a の合成 と同様の方法を用いて、57c と塩化バレリルから 60f を得た。収率 56%。融点 66-67 ℃ (ジイソ プロピルエーテルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 0.91 (3H, t, *J* = 7.0 Hz), 1.23-1.42 (2H, m), 1.51-1.80 (4H, m), 1.97-2.20 (3H, m), 2.23-2.40 (1H, m), 2.69-2.95 (2H, m), 3.06-3.19 (1H, m), 3.35-3.44 (2H, m), 3.79 (3H, s), 5.45 (1H, br s), 6.70-6.79 (2H, m), 7.11 (1H, d, *J* = 8.4 Hz)。*Anal.* calcd for C₁₇H₂₅NO₂: C, 74.14; H, 9.15; N, 5.09。Found: C, 73.93; H, 9.00; N, 5.16。

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]-2-methylpropanamide (60g).。前記 60c の合成 と同様の方法を用いて、57c と塩化イソブチリルから 60g を得た。収率 94%。融点 104–105 °C (酢酸エチル—ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.50–1.81 (2H, m), 1.96– 2.14 (1H, m), 2.25–2.40 (2H, m), 2.68–2.95 (2H, m), 3.02–3.18 (1H, m), 3.32–3.44 (2H, m), 3.78 (3H, s), 5.49 (1H, br s), 6.67–6.75 (2H, m), 7.11 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₆H₂₃NO₂: C, 73.53; H, 8.87; N, 5.36。Found: C, 73.64; H, 9.02; N, 5.35。

N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide (60h)。後述する (*E*)-61a の合成と同様の方法を用いて、57c と無水トリフルオロ酢酸から 60h を得た。収率 68%。融 点 66-67 °C (ジイソプロピルエーテルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.60-1.80 (2H, m), 2.02-2.20 (1H, m), 2.24-2.41 (1H, m), 2.77-2.96 (2H, m), 3.05-3.21 (1H, m), 3.50 (2H, q, *J* = 7.2 Hz), 3.79 (3H, s), 6.32 (1H, br s), 6.70-6.77 (2H, m), 7.12 (1H, d, *J* = 8.4 Hz)。*Anal.* calcd for C₁₄H₁₆F₃NO₂: C, 58.53; H, 5.61; N, 4.88。Found: C, 58.30; H, 5.41; N, 5.08。

N-[2-(2,3-Dihydro-6-methoxy-7-methyl-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide (60i)。前記 60a の合成と同様の方法を用いて、(*E*)-61d から 60i を得た。収率 68%。融点 126-127 °C (酢酸エ

チルーヘキサンから再結晶)。¹H NMR (CDCl₃) & 1.62–2.32 (4H, m), 2.16 (3H, s), 2.74–3.05 (2H, m), 3.22–3.58 (3H, m), 3.81 (3H, s), 6.17 (1H, br s), 6.69 (1H, d, *J* = 8.2 Hz), 7.02 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₅H₁₈F₃NO₂: C, 59.79; H, 6.02; N, 4.65。Found: C, 59.96; H, 5.95; N, 4.62。

N-[2-(2,3-Dihydro-6-methoxy-5-methyl-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide (60j)。前記 60a の合成と同様の方法を用いて、(*E*)-61e から 60j を得た。収率 49%。融点 105–106 °C (酢酸エ チルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.61–1.80 (2H, m), 2.04–2.41 (2H, m), 2.19 (3H, s), 2.70–2.96 (2H, m), 3.08–3.21 (1H, m), 3.50 (2H, q, *J* = 7.0 Hz), 3.82 (3H, s), 6.30 (1H, br s), 6.68 (1H, s), 7.00 (1H, s)。*Anal.* calcd for C₁₅H₁₈F₃NO₂: C, 59.79; H, 6.02; N, 4.65。Found: C, 59.44; H, 6.04; N, 4.71。

N-[2-(2,3-Dihydro-6,7-dimethoxy-1*H*-inden-1-yl)ethyl]acetamide (60k)。前記 60c の合成と同様の 方法を用いて、57f と無水酢酸から 60k を得た。収率 72%。融点 79-81 °C (酢酸エチルーヘキサ ンから再結晶)。¹H NMR (CDCl₃) δ 1.70-1.93 (3H, m), 1.95 (3H, s), 2.15-2.36 (1H, m), 2.67-3.21 (3H, m), 3.25-3.53 (2H, m), 3.85 (3H, s), 3.87 (3H, s), 5.90 (1H, br s), 6.75 (1H, d, *J* = 8.4 Hz), 6.91 (1H, d, *J* = 8.1 Hz)。*Anal.* calcd for C₁₅H₂₁NO₃: C, 69.29; H, 8.36; N, 5.05。Found: C, 69.23; H, 8.09; N, 5.14。

N-[2-(2,3-Dihydro-5,6-dimethoxy-1*H*-inden-1-yl)ethyl]acetamide (60l)。後述する (*E*)-61a の合成 と同様の方法を用いて、57g と無水酢酸から 60l を得た。収率 95%。油状。¹H NMR (CDCl₃) δ 1.48–1.80 (2H, m), 1.96–2.12 (1H, m), 1.98 (3H, s), 2.24–2.40 (1H, m), 2.70–2.95 (2H, m), 3.03–3.18 (1H, m), 3.37 (2H, dd, *J* = 7.4 Hz, 13.6 Hz), 3.85 (3H, s), 3.86 (3H, s), 5.60 (1H, br s), 6.74 (1H, s), 6.76 (1H, s)。 *Anal.* calcd for C₁₅H₂₁NO₃: C, 69.29; H, 8.36; N, 5.05。Found: C, 69.21; H, 8.44; N, 4.92。

N-[2-(2,3-Dihydro-6-methoxy-2-phenyl-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide (60m)。前記 60a の合成と同様の方法を用いて、62c から 60m を得た。収率 68%。融点 109–111 °C (酢酸エチ ルーヘキサンから再結晶)。¹H NMR (DMSO-*d*₆) δ 1.20–1.45 (2H, m), 2.95–3.38 (5H, m), 3.70–3.82 (1H, m), 3.75 (3H, s), 6.76 (1H, dd, *J* = 2.4 Hz, 8.2 Hz), 6.90 (1H, d, *J* = 2.4 Hz), 7.16–7.36 (6H, m), 9.31 (1H, br s)。*Anal.* calcd for C₂₀H₂₀F₃NO₂: C, 66.11; H, 5.55; N, 3.85。Found: C, 66.04; H, 5.58; N, 3.79。

N-[2-(2,3-Dihydro-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide (60n)。前記 60a の合成と同様の 方法を用いて、(*E*)-61h から 60m を得た。収率 76%。融点 67–68 °C (ジイソプロピルエーテル— ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.64–1.82 (2H, m), 2.07–2.42 (2H, m), 2.79–3.06 (2H, m), 3.12–3.23 (1H, m), 3.51 (2H, q, *J* = 7.0 Hz), 6.32 (1H, br s), 7.20 (4H, s)。*Anal.* calcd for C₁₃H₁₄F₃NO: C, 60.70; H, 5.49; N, 5.44。Found: C, 60.60; H, 5.24; N, 5.49。

(E)-N-[2-(2,3-Dihydro-6-methoxy-1H-inden-1-ylidene)ethyl]propanamide ((E)-61a)。Method F。
 化合物 (E)-58c (3.0 g、16 mmol) およびトリエチルアミン (2.4 g、24 mmol) の THF (35 mL) 溶液
 に塩化プロピオニル (1.9 g、21 mmol) を氷冷下で加え、混合物を 15 分間撹拌した。反応液を水
 に注ぎ、酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄した後、乾燥、濃縮した。
 残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製した後酢酸エチルから再結晶

し、(*E*)-**61a** (2.3 g、収率 59%) を得た。融点 129–131 °C。¹H NMR (CDCl₃) δ 1.18 (3H, t, *J* = 7.5 Hz), 2.24 (2H, q, *J* = 7.5 Hz), 2.73–2.86 (2H, m), 2.90–3.00 (2H, m), 3.81 (3H, s), 4.04 (2H, t, *J* = 6.2 Hz), 5.55 (1H, br s), 5.88 (1H, m), 6.79 (1H, dd, *J* = 2.4 Hz, 8.1 Hz), 6.93 (1H, d, *J* = 2.4 Hz), 7.14 (1H, d, *J* = 8.1 Hz). *Anal.* calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71。Found: C, 72.91; H, 7.81; N, 5.58。

(Z)-N-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-ylidene)ethyl]propanamide ((Z)-61a)。前記 (E)-61a の合成と同様の方法を用いて、(Z)-58c と塩化プロピオニルから (Z)-61a を得た。収率 58%。融点 91–93 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.17 (3H, t, *J* = 7.6 Hz), 2.23 (2H, q, *J* = 7.6 Hz), 2.72–2.80 (2H, m), 2.84–2.90 (2H, m), 3.80 (3H, s), 4.24–4.30 (2H, m), 5.50–5.64 (2H, m), 6.81 (1H, dd, *J* = 2.4 Hz, 8.2 Hz), 7.04 (1H, d, *J* = 2.4 Hz), 7.18 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71。Found: C, 73.28; H, 7.99; N, 5.68。

(*E*)-*N*-[2-(3,4-Dihydro-7-methoxy-1(2*H*)-naphthalenylidene)ethyl]-2,2,2-trifluoroacetamide ((*E*)-61b)。前記 (*E*)-61a の合成と同様の方法を用いて、58b と無水トリフルオロ酢酸から (*E*)-61b を 得た。収率 37%。融点 98–100 °C (ジエチルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.84 (2H, m), 2.53 (2H, t, *J* = 5.5 Hz), 2.73 (2H, t, *J* = 6.2 Hz), 3.81 (3H, s), 4.18 (2H, t, *J* = 6.2 Hz), 5.93 (1H, t, *J* = 7.1 Hz), 6.40 (1H, br s), 6.78 (1H, dd, *J* = 2.6 Hz, 8.4 Hz), 7.00–7.10 (2H, m)。

(*E*)-2,2,2-Trifluoro-*N*-[2-(6,7,8,9-tetrahydro-3-methoxy-5*H*-benzocyclohepten-5-ylidene)ethyl]acetamide ((*E*)-61c)。前記 (*E*)-61a の合成と同様の方法を用いて、(*E*)-58a と無水トリフルオロ酢 酸から (*E*)-61c を得た。収率 91%。融点 101–103 °C (ジイソプロピルエーテル—へキサンから再 結晶)。¹H NMR (CDCl₃) δ 1.69–1.79 (4H, m), 2.39–2.47 (2H, m), 2.65–2.71 (2H, m), 3.80 (3H, s), 5.45 (2H, t, *J* = 7.0 Hz), 6.36 (1H, br s), 6.68–6.75 (2H, m), 7.00 (1H, d, *J* = 8.0 Hz)。

(*E*)-*N*-[2-(5-Bromo-2,3-dihydro-6-methoxy-7-methyl-1*H*-inden-1-ylidene)ethyl]-2,2,2-trifluoroacetamide ((*E*)-61d)。前記 (*E*)-61a の合成と同様の方法を用いて、(*E*)-58d と無水トリフルオロ酢 酸から (*E*)-61d を得た。収率 89%。融点 138–139 °C (ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 2.44 (3H, s), 2.76–2.86 (2H, m), 2.88–2.99 (2H, m), 3.76 (3H, s), 4.15 (2H, t, *J* = 6.4 Hz), 5.87–5.96 (1H, m), 6.41 (1H, br s), 7.32 (1H, s)。

(*E*)-*N*-[2-(7-Bromo-2,3-dihydro-6-methoxy-5-methyl-1*H*-inden-1-ylidene)ethyl]-2,2,2-trifluoroacetamide ((*E*)-61e)。前記 (*E*)-61a の合成と同様の方法を用いて、(*E*)-58e と無水トリフルオロ酢 酸から (*E*)-61e を得た。収率 88%。融点 117–118 °C (酢酸エチル―ジイソプロピルエーテルから 再結晶)。¹H NMR (CDCl₃) δ 2.33 (3H, s), 2.78–2.88 (2H, m), 2.90–2.98 (2H, m), 3.79 (3H, s), 4.17 (2H, t, *J* = 6.2 Hz), 6.42 (1H, br s), 6.81–6.91 (1H, m), 7.03 (1H, s)。

(*E*)-*N*-[2-(2,3-Dihydro-1*H*-inden-1-ylidene)ethyl]-2,2,2-trifluoroacetamide ((*E*)-61h)。前記 (*E*)-61a の合成と同様の方法を用いて、(*E*)-58h と無水トリフルオロ酢酸から (*E*)-61h を得た。収率 22%。 融点 101–103 ℃ (ジイソプロピルエーテル―ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.76–2.85 (2H, m), 3.01–3.09 (2H, m), 4.15 (2H, t, *J* = 6.4 Hz), 5.84–5.96 (1H, m), 6.39 (1H, br s), 7.18–7.24 (3H, m), 7.41–7.50 (1H, m).

N-[2-(5-Methoxy-1H-inden-3-yl)ethyl]propanamide (62a)。前記 (*E*)-**61a** の合成と同様の方法を 用いて、**59c** と塩化プロピオニルから **62a** を得た。収率 39%。融点 61–63 °C (酢酸エチルーへキ サンから再結晶)。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.5 Hz), 2.18 (2H, q, *J* = 7.5 Hz), 2.76 (2H, dt, *J* = 1.8 Hz, 6.6 Hz), 3.30 (2H, d, *J* = 1.8 Hz), 3.61 (2H, q, *J* = 6.6 Hz), 3.85 (3H, s), 5.55 (1H, br s), 6.31 (1H, s), 6.78 (1H, dd, *J* = 2.2 Hz, 8.1 Hz), 6.93 (1H, d, *J* = 2.2 Hz), 7.35 (1H, d, *J* = 8.1 Hz)。 *Anal*.calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71。Found: C, 73.24; H, 7.74; N, 5.85。

2,2,2-Trifluoro-*N*-[2-(5-methoxy-1*H*-inden-3-yl)ethyl]acetamide (62b)。前記 (*E*)-61a の合成と同様の方法を用いて、59c と無水トリフルオロ酢酸から 62b を得た。収率 88%。融点 87–88 °C (ジイソプロピルエーテル—ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.84 (2H, dt, *J* = 1.2 Hz, 6.6 Hz), 3.32 (2H, d, *J* = 6.6 Hz), 3.70 (2H, q, *J* = 6.6 Hz), 3.85 (3H, s), 6.33 (1H, br s), 6.40 (1H, br s), 6.80 (1H, dd, *J* = 2.2 Hz, 8.2 Hz), 6.91 (1H, d, *J* = 2.2 Hz), 7.36 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₄H₁₄F₃NO₂: C, 58.95; H, 4.95; N, 4.91。Found: C, 58.89; H, 4.94; N, 5.08。

2,2,2-Trifluoro-*N*-[**2**-(**5**-methoxy-2-phenyl-1*H*-inden-3-yl)ethyl]acetamide (62c)。前記 (*E*)-61a の 合成と同様の方法を用いて、**59i** と無水トリフルオロ酢酸から 62c を得た。収率 92%。融点 138– 139 °C (酢酸エチル—ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 3.03 (2H, t, *J* = 7.2 Hz), 3.61 (2H, q, *J* = 7.2 Hz), 3.71 (2H, s), 3.88 (3H, s), 6.29 (1H, br s), 6.81 (1H, dd, *J* = 2.2 Hz, 8.4 Hz), 7.03 (1H, d, *J* = 2.2 Hz), 7.39 (1H, d, *J* = 8.4 Hz), 7.40 (5H, s)。*Anal.* calcd for C₂₀H₁₈F₃NO₂: C, 66.48; H, 5.02; N, 3.88. Found: C, 66.23; H, 4.90; N, 3.65。

2,2,2-Trifluoro-*N*-[2-[5-methoxy-2-(phenylmethyl)-1*H*-inden-3-yl]ethyl]acetamide (62d)。前記 (*E*)-61a の合成と同様の方法を用いて、59j と無水トリフルオロ酢酸から 62d を得た。定量的。融 点 126–128 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.93 (2H, t, *J* = 7.1 Hz), 3.23 (2H, s), 3.60 (2H, q, *J* = 7.1 Hz), 3.80 (2H, s), 3.85 (3H, s), 6.45 (1H, br s), 6.72 (1H, dd, *J* = 2.4 Hz, 8.1 Hz), 6.92 (1H, d, *J* = 2.4 Hz), 7.12–7.37 (6H, m)。*Anal.* calcd for C₂₁H₂₀F₃NO₂: C, 67.19; H, 5.37; N, 3.73。 Found: C, 67.22; H, 5.35; N, 3.45。

5-Methoxy-1*H*-indene-3-carbonitrile (63)。Method I。化合物 55c (10 g、62 mmol) およびヨウ化 亜鉛(II) (0.8 g、2.5 mmol) のジクロロメタン (200 mL) 溶液にトリメチルシリルシアニド (7.3 g、 74 mmol) を加え、混合物をアルゴン雰囲気下、40 °C で 20 時間撹拌した。反応液を水および飽 和食塩水で洗浄した後、セライトろ過した。ろ液を濃縮して残渣をトルエン (200 mL) に、懸濁 した。これにトリフルオロ酢酸 (14 mL、0.18 mol) を加えて、混合物を 1.5 時間加熱還流した。 反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄した後、乾燥、 濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン—酢酸エチル、9:1) で精製し、 **63** (4.5 g、収率 42%) を油状物として得た。¹H NMR (CDCl₃) δ 3.57 (2H, d, *J* = 2.2 Hz), 3.87 (3H, s), 6.90 (1H, dd, *J* = 2.2 Hz, 8.2 Hz), 7.11 (1H, d, *J* = 2.2 Hz), 7.32–7.35 (1H, m), 7.39 (1H, d, *J* = 8.2 Hz)。

2,3-Dihydro-6-methoxy-1*H***-indene-1-methanamine** (64)。前記 (*E*)-58c の合成と同様の方法を用いて、63 から 64 を得た。収率 13%。油状。得られた化合物は精製することなく次の反応に用いた。

N-[(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)methyl]-2,2,2-trifluoroacetamide (65)。前記 (*E*)-61aの 合成と同様の方法を用いて 64 をトリフルオロアセチル化した後、前記 60a の合成と同様の方法 を用いて二重結合を水素添加し、65 を得た。化合物 64 からの収率 46%。融点 78–79 °C (酢ジイ ソプロピルエーテル—ヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.75–1.90 (1H, m, 2.22–2.40 (1H, m), 2.72–3.00 (2H, m), 3.35–3.75 (3H, m), 3.79 (3H, s), 6.38 (1H, br s), 6.74–6.81 (2H, m), 7.16 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₃H₁₄F₃NO₂: C, 57.14; H, 5.16; N, 5.13。Found: C, 57.22; H, 4.98; N, 5.24。

2,3-Dihydro-6-methoxy-1*H*-indene-1-acetic acid ethyl ester (66)。Method J。60% 水素化ナトリ ウム (1.8 g、46 mmol) の THF (200 mL) 懸濁液にジエチルホスホノ酢酸エチル (10 g、46 mmol) を氷冷下に滴下し、混合物を均一になるまで撹拌した。これに 55c (7.1 g、44 mmol) の THF (30 mL) 懸濁液を加え、混合物を室温で 2 時間、さらに 70 °C で 12 時間撹拌した。反応液を水に注 ぎ、酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄した後、乾燥、濃縮した。残渣 をエタノール (200 mL) に溶解し、5% パラジウム炭素 (2.5 g、50% 含水品) を加え、水素雰囲 気下、50 °C で 1.5 時間撹拌した。反応液をろ過し、ろ液を濃縮した。残渣をシリカゲルカラム クロマトグラフィー (ヘキサン一酢酸エチル、97:3 から 4:1) で精製し、66 (6.6 g、収率 64%) を 油状物として得た。¹H NMR (CDCl₃) δ 1.28 (3H, t, *J* = 7.2 Hz), 1.67–1.83 (1H, m), 2.30–2.47 (2H, m), 2.69–2.95 (3H, m), 3.47–3.62 (1H, m), 3.78 (3H, s), 4.18 (2H, q, *J* = 7.2 Hz), 6.69–6.75 (2H, m), 7.11 (1H, d, *J* = 8.6 Hz)。

2,3-Dihydro-6-methoxy-1*H***-indene-1-ethanol (67)**。Method K。水素化リチウムアルミニウム (1.1 g、28 mmol) の THF (150 mL) 懸濁液を氷冷し、撹拌しながら 66 (6.5 g、28 mmol) の THF (20 mL) 溶液を滴下した。混合物を 15 分間撹拌した後、水 (1.0 mL)、酢酸エチル、硫酸マグネ シウムおよびセライトを加え、ろ過した。ろ液を濃縮し、67 (5.0 g、収率 93%) を油状物として 得た。¹H NMR (CDCl₃) δ 1.35 (1H, br s), 1.60–1.82 (2H, m), 2.06–2.41 (2H, m), 2.69–2.96 (2H, m), 3.15–3.28 (1H, m), 3.75–3.88 (2H, m), 3.79 (3H, s), 6.68–6.79 (2H, m), 7.12 (1H, d, *J* = 8.0 Hz)。

1-(2-Bromoethyl)-2,3-dihydro-6-methoxy-1*H*-indene (68)。Method L。化合物 67 (5.0 g、26 mmol) のジクロロメタン (100 mL) 溶液に三臭化リン (0.86 mL、27 mmol) を -5 ℃で滴下し、 混合物を 30 分間撹拌した。反応液に水を加え、クロロホルムで抽出した。抽出液を水および飽 和食塩水で洗浄し、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一 酢酸エチル、7:3 から 1:1) で精製し、67 (1.8 g、収率 27%) を油状物として得た。¹H NMR (CDCl₃) δ 1.60–1.78 (1H, m), 1.88–2.06 (1H, m), 2.24–2.41 (2H, m), 2.70–2.96 (2H, m), 3.21–3.38 (1H, m), 3.41–3.60 (2H, m), 3.79 (3H, s), 6.68–6.78 (2H, m), 7.12 (1H, d, *J* = 7.6 Hz).

2,3-Dihydro-6-methoxy-1*H*-indene-1-propanenitrile (69)。Method M。化合物 68 (1.8 g、 6.9 mmol) のジメチルスルホキシド (80 mL) 溶液にシアン化ナトリウム (0.35 g、 7.2 mmol) を加え、 混合物を 60 °C で 40 分間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を水お よび飽和食塩水で洗浄し、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキ サン一酢酸エチル、17:3) で精製し、69 (1.3 g、収率 93%) を油状物として得た。¹H NMR (CDCl₃) δ 1.62–1.89 (2H, m), 2.03–2.48 (4H, m), 2.71–2.96 (2H m), 3.18–3.33 (1H, m), 3.80 (3H, s), 6.72–6.78 (2H, m), 7.13 (1H, d, *J* = 9.0 Hz)。

2,3-Dihydro-6-methoxy-1*H***-indene-1-propanamine** (70)。前記 57c の合成と同様の方法を用いて、 69 から 70 を得た。収率 96%。油状。¹H NMR (CDCl₃) δ 1.20–1.95 (8H, m), 2.20–2.38 (1H, m), 2.68– 2.94 (3H, m), 3.01–3.15 (1H, m), 3.79 (3H, s), 6.67–6.78 (2H, m), 7.04–7.14 (1H, m)。

N-[3-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)propyl]-2,2,2-trifluoroacetamide (71)。前記 (*E*)-61a の合成と同様の方法を用いて、70 と無水トリフルオロ酢酸から 71 を得た。収率 97%。油状。¹H NMR (CDCl₃) δ 1.40–1.94 (5H, m), 2.01–2.38 (1H, m), 2.69–2.90 (2H, m), 3.02–3.18 (1H, m), 3.42 (1H, q, *J* = 6.6 Hz), 3.80 (3H, s), 6.30 (1H, br s), 6.69–6.75 (2H, m), 7.08–7.15 (1H, m); *Anal.* calcd for C₁₅H₁₈F₃NO₂: C, 59.79; H, 6.02; N, 4.65。Found: C, 59.78; H, 6.08; N, 4.39。

N-[2-(2,3-Dihydro-6-hydroxy-1*H*-inden-1-yl)ethyl]propanamide (72)。Method N。化合物 60d (5.6 g、22 mmol) のジクロロメタン (200 mL) 溶液に三臭化ホウ素 (11 g、45 mmol) を氷冷下で加え、 混合物を 2 時間撹拌した。反応液を氷水に注ぎ、室温で 15 時間撹拌した後、酢酸エチルで抽出 した。抽出液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチルーメタノール、 19:1) で精製した後、酢酸エチルーヘキサンから再結晶し、72 (5.2 g、定量的) を得た。融点 119–121 °C。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.6 Hz), 1.50–1.80 (2H, m), 1.87–2.10 (1H, m), 2.22 (1H, q, *J* = 7.6 Hz), 2.20–2.38 (1H, m), 2.65–2.90 (2H, m), 2.97–3.15 (1H, m), 3.38 (2H, q, *J* = 7.0 Hz), 5.67 (1H, br s), 6.68 (1H, dd, *J* = 2.9 Hz, 8.0 Hz), 6.74 (1H, d, *J* = 2.9 Hz), 7.05 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00。Found: C, 71.78; H, 8.00; N, 5.94。

N-[2-(6-Ethoxy-2,3-dihydro-1*H*-inden-1-yl)ethyl]propanamide (73a)。Method O。化合物 72 (1.0 g、 4.3 mmol)のDMF (10 mL)溶液に炭酸カリウム (3.0 g、21 mmol)およびヨウ化メチル (6.7 g、 43 mmol)を加え、混合物を 1.5 時間加熱還流した。反応液を水に注ぎ、酢酸エチルで抽出した。 抽出液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル―メタノール、17:3) で精製した後、酢酸エチル―ヘキサンから再結晶し、**73a** (0.86 g、収率 77%)を得た。融点 87-89 °C。¹H NMR (CDCl₃) δ 1.00 (3H, t, *J* = 7.7 Hz), 1.31 (3H, t, *J* = 7.0 Hz), 1.39–1.71 (2H, m), 1.80–2.00 (1H, m), 2.07 (2H, q, *J* = 7.7 Hz), 2.15–2.33 (1H, m), 2.59–2.89 (2H, m), 2.91–3.08 (1H, m), 3.14 (2H, q, *J* = 7.7 Hz), 3.97 (2H, q, J = 7.0 Hz), 6.66 (1H, d, J = 2.4 Hz), 6.75 (1H, d, J = 2.4 Hz), 7.07 (1H, d, J = 8.1 Hz), 7.79 (1H, br s). *Anal.* calcd for C₁₆H₂₃NO₂: C, 73.53; H, 8.87; N, 5.36. Found: C, 73.55; H, 8.87; N, 5.22.

N-[2-(2,3-Dihydro-6-propoxy-1*H*-inden-1-yl)ethyl]propionamide (73b)。前記 73a の合成と同様の 方法を用いて、72 とヨウ化エチルから 73b を得た。収率 70%。融点 60–62 °C (酢酸エチルーへキ サンから再結晶)。¹H NMR (CDCl₃) δ 1.03 (3H, t, *J* = 7.5 Hz), 1.15 (3H, t, *J* = 7.5 Hz), 1.50–1.90 (4H, m), 1.98–2.40 (2H, m), 2.19 (2H, q, *J* = 7.5 Hz), 2.67–2.97 (2H, m), 3.01–3.20 (1H, m), 3.30–3.45 (2H, m), 3.89 (2H, t, *J* = 6.6 Hz), 5.47 (1H, br s), 6.70 (1H, dd, *J* = 2.2 Hz, 8.1 Hz), 6.74 (1H, d, *J* = 2.2 Hz), 7.09 (1H, d, *J* = 8.1 Hz)。*Anal.* calcd for C₁₇H₂₅NO₂: C, 74.14; H, 9.15; N, 5.09。Found: C, 74.15; H, 8.92; N, 5.17。

N-[2-[2,3-Dihydro-6-(1-methylethoxy)-1*H*-inden-1-yl]ethyl]propionamide (73c)。前記 73a の合成 と同様の方法を用いて、72 とヨウ化プロピルから 73c を得た。収率 58%。融点 52–54 ℃ (ヘキサ ンから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.5 Hz), 1.32 (6H, d, *J* = 5.9 Hz), 1.43–1.80 (2H, m), 1.94–2.40 (2H, m), 2.19 (2H, q, *J* = 7.5 Hz), 2.67–2.95 (2H, m), 3.00–3.20 (1H, m), 3.30–3.47 (2H, m), 4.40–4.60 (1H, m), 5.45 (1H, br s), 6.69 (1H, dd, *J* = 2.6 Hz, 8.1 Hz), 6.73 (1H, d, *J* = 2.6 Hz), 7.09 (1H, d, *J* = 8.1 Hz)。*Anal.* calcd for: C₁₇H₂₅NO₂: C, 74.14; H, 9.15; N, 5.09。Found: C, 74.21; H, 9.14; N, 5.05。

第4章第2節に関する実験

(*E*)-3-(2,3-Dihydro-5-benzofuranyl)-2-propenoic acid (75)。 2,3-Dihydro-5-benzofurancarboxaldehyde (74) (5.0 g、34 mmol) およびマロン酸 (5.3 g、51 mmol) のピリジン (30 mL) 溶液にピペ リジン (0.19 g、2.3 mmol) を加え、混合物を 100 °C で 4 時間撹拌した。反応液を濃縮した後、 残渣に水を加えた。これを 6 N 塩酸で産生にした後、クロロホルム—メタノール (9:1) で抽出し た。抽出液を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラ フィー (クロロホルム—メタノール、19:1) で精製し、75 (4.0 g、収率 62%) を得た。融点 173– 176 °C (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 3.24 (2H, t, *J* = 8.8 Hz), 4.64 (2H, t, *J* = 8.8 Hz), 6.28 (1H, d, *J* = 15.9 Hz), 6.55 (1H, d, *J* = 8.2 Hz), 7.34 (1H, d, *J* = 8.2 Hz), 7.44 (1H, s), 7.74 (1H, d, *J* = 15.9 Hz), hidden (1H)。*Anal.* calcd for C₁₁H₁₀O₃: C, 69.46; H, 5.30。Found: C, 69.34; H, 5.35。

2,3-Dihydro-5-benzofuranpropanoic acid (76)。化合物 75 (3.8 g、20 mmol)の酢酸 (50 mL) 溶液 に 10% パラジウム炭素 (0.5 g、50% 含水品) を加え、混合物を水素雰囲気下、室温で 1 時間撹 拌した。反応液をろ過し、ろ液を濃縮した、残渣をヘキサンで洗浄し、76 (3.4 g、収率 90%) を 得た。融点 95–98 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.63 (2H, t, *J* = 7.5 Hz), 2.89 (2H, t, *J* = 7.5 Hz), 3.18 (2H, t, *J* = 8.8 Hz), 4.55 (2H, t, *J* = 8.8 Hz), 6.70 (1H, d, *J* = 8.1 Hz), 6.94 (1H, d, *J* = 8.1 Hz), 7.04 (1H, s), hidden (1H)。*Anal.* calcd for C₁₁H₁₂O₃: C, 68.74; H, 6.29。Found: C, 68.65; H, 6.25.

2,3,5,6-Tetrahydro-7*H*-indeno[5,6-*b*]furan-7-one (77)。化合物 76 (5.8 g、30 mmol) を塩化チオニ ル (6.6 mL、20 mol) に加え、混合物を 75 °C で 40 分間撹拌した。反応液を濃縮した後、1,2-ジ クロロエタン (10 mL) に溶解した。この溶液の 1/3 を氷冷した無水塩化アルミニウム (1.5 g、11 mmol) の 1,2-ジクロロエタン (150 mL) 懸濁液に加え、混合物を 15 分間撹拌した。これに塩化 アルミニウム (3.0 g、22 mmol) および先に調製した酸クロリドの 1,2-ジクロロエタン溶液の残り を加え、混合物を室温でさらに 15 分間撹拌した。反応液を氷水に注ぎ、酢酸エチルで抽出した。 抽出液を 1 N 塩酸、1 N 水酸化ナトリウム水溶液および飽和食塩水で洗浄し、乾燥、濃縮した。 残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、7:3) で精製した後、酢酸 エチル—ジイソプロピルエーテルから再結晶し、77 (4.1 g、収率 77%) を得た。融点 110–111 °C。 ¹H NMR (CDCl₃) δ 2.66–2.74 (2H, m), 2.99–3.07 (2H, m), 3.27 (2H, t, *J* = 8.6 Hz), 4.64 (2H, t, *J* = 8.6 Hz), 7.07 (1H, s), 7.27 (1H, s)。

(*E*)-2-(2,3,5,6-Tetrahydro-7*H*-indeno[5,6-*b*]furan-7-ylidene)acetonitrile (78)。シアノメチルホスホ ン酸時エチル (3.3 g、19 mmol) の THF (40 mL) 溶液に 60% 水素化ナトリウム (0.74 g、19 mmol) を加え、混合物を室温で 30 分間撹拌した。これに 77 (3.0 g、17 mmol) の THF (20 mL) 溶液を加え、混合物を室温で 2 時間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出 液を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、1:1) で精製した後、酢酸エチル—ジイソプロピルエーテルから再結晶 し、78 (2.2 g、収率 66%) を得た。融点 141–142 °C。¹H NMR (CDCl₃) δ 2.97–3.04 (2H, m), 3.06– 3.17 (2H, m), 3.22 (2H, t, *J* = 8.6 Hz), 4.61 (2H, t, *J* = 8.6 Hz), 5.50–5.52 (1H, m), 6.84 (1H, s), 7.16 (1H, s)。

3,5,6,7-Tetrahydro-2H-7-indeno[5,6-b]furanethanamine (**79**)。化合物 **77** (2.2 g、11 mmol) の飽和 アンモニアエタノール (50 mL) 溶液に Raney nickel (2.0 g) を加え、水素雰囲気下 (480 kPa)、混 合物を 40 °C で 5 時間撹拌した。反応液をろ過した後、ろ液を減圧濃縮し、79 (2.1 g、収率 95%) を油状物として得た。¹H NMR (CDCl₃) δ 1.39 (2H, br s), 1.47–1.77 (2H, m), 1.86–2.03 (1H, m), 2.20–2.38 (1H, m), 2.65–2.94 (4H, m), 3.02–3.18 (1H, m), 3.15 (2H, t, *J* = 8.6 Hz), 4.55 (2H, t, *J* = 8.6 Hz), 6.63 (1H, s), 7.02 (1H, s)。このものはこれ以上精製せずに次に反応に用いた。

N-[2-(3,5,6,7-Tetrahydro-2*H*-indeno[5,6-*b*]furan-7-yl)ethyl]acetamide (80a)。化合物 79 (0.30 g、 1.5 mmol) を1N 水酸化ナトリウム水溶液 (2.5 mL) および THF (3 mL) の混液に加え、激しく撹 拌しながら無水酢酸 (0.17 mL, 1.8 mmol) を滴下した。混合物を室温で 30 分間撹拌した後水を加 え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄した後、乾燥、濃縮した。残渣を酢酸エ チルーヘキサンから再結晶し、80a (0.28 g、収率 77%) を得た。融点 127–128 °C。¹H NMR (CDCl₃) δ 1.48–1.80 (2H, m), 1.94–2.10 (1H, m), 1.97 (3H, s), 2.23–2.41 (1H, m), 2.66–2.92 (2H, m), 3.00–3.19 (3H, m), 3.31–3.42 (2H, m), 4.55 (2H, t, *J* = 8.6 Hz), 5.52 (1H, br s), 6.61 (1H, s), 7.02 (1H, s). *Anal.* calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71. Found: 73.16; H, 7.92; N, 5.70.

N-[2-(3,5,6,7-Tetrahydro-2*H*-indeno[5,6-*b*]furan-7-yl)ethyl]propanamide (80b)。前記 80a の合成 と同様の方法を用いて、79 と塩化プロピオニルから 80b を得た。収率 71%。融点 125–126 °C (酢 酸エチルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.6 Hz), 1.49–1.80 (2H, m), 1.93–2.09 (1H, m), 2.15–2.41 (3H, m), 2.65–2.92 (2H, m), 3.00–3.19 (3H, m), 3.33–3.43 (2H, m), 4.55 (2H, t, *J* = 8.6 Hz), 5.46 (1H, br s), 6.61 (1H, s), 7.02 (1H, s)。*Anal.* calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40。Found: C, 74.20; H, 8.21; N, 5.45。

N-[2-(3,5,6,7-Tetrahydro-2*H*-indeno[5,6-*b*]furan-7-yl)ethyl]butanamide (80c)。前記 80a の合成と 同様の方法を用いて、79 と塩化ブチリルから 80c を得た。収率 72%。融点 120–121 ℃ (酢酸エチ ルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 0.94 (3H, t, *J* = 7.2 Hz), 1.49–1.81 (4H, m), 1.94–2.18 (3H, m), 2.23–2.40 (1H, m), 2.66–2.92 (2H, m), 2.99–3.19 (3H, m), 3.12–3.43 (2H, m), 4.55 (2H, t, *J* = 8.6 Hz), 5.45 (1H, br s), 6.61 (1H, s), 7.02 (1H, s)。*Anal.* calcd for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12。 Found: C, 74.51; H, 8.63; N, 4.98。

(*E*)-3-(2,3-Dihydro-5-benzofuranyl)-2-propenoic acid ethyl ester (81)。ジエチルホスホノ酢酸エ チル (19 g、85 mmol) の THF (150 mL) 溶液に 60% 水素化ナトリウム (3.4 g、85 mmol) を加え、 混合物を室温で 20 分間撹拌した。混合物に 74 (11 g、77 mmol) の THF (15 mL) 溶液を滴下し、 混合物を室温でさらに 1 時間撹拌した。反応液に水を加え二層を分離し、水層を酢酸エチルで抽 出した。先の有機層と抽出液を合わせ、飽和食塩水で洗浄した後、乾燥、濃縮した。残渣をシリ カゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、19:1 から 9:1) で精製し、81 (15 g、 収率 88%) を油状物として得た。¹H NMR (CDCl₃) & 1.33 (3H, t, *J* = 7.2 Hz), 3.23 (2H, t, *J* = 8.8 Hz), 4.25 (2H, q, *J* = 7.2 Hz), 4.63 (2H, t, *J* = 8.8 Hz), 6.28 (1H, d, *J* = 16.0 Hz), 6.79 (1H, d, *J* = 8.4 Hz), 7.31 (1H, d, *J* = 8.4 Hz), 7.41 (1H, s), 7.64 (1H, d, *J* = 16.0 Hz)。

2,3-Dihydro-5-benzofuranpropanoic acid ethyl ester (82)。化合物 **81** (15 g、67 mmol)のエタノー ル (150 mL) 溶液に 10% パラジウム炭素 (1.0 g、50% 含水品)を加え、混合物を水素雰囲気下、 室温で 2 時間撹拌した。反応液をろ過した後ろ液を濃縮し、**82** (15 g、収率 99%)を油状物とし て得た。¹H NMR (CDCl₃) δ 1.24 (3H, t, *J* = 7.2 Hz), 2.57 (2H, t, *J* = 7.8 Hz), 2.88 (2H, t, *J* = 7.8 Hz), 3.18 (2H, t, *J* = 8.6 Hz), 4.13 (2H, q, *J* = 7.2 Hz), 4.55 (2H, t, *J* = 8.6 Hz), 6.70 (1H, d, *J* = 8.2 Hz), 6.94 (1H, d, *J* = 8.2 Hz), 7.05 (1H, s)。

7-Bromo-2,3-dihydro-5-benzofuranpropanoic acid ethyl ester (83)。化合物 82 (15 g、 66 mmol) お よび酢酸ナトリウム (5.9 g、 72 mmol) の酢酸 (150 mL) 溶液に臭素 (11 g、 66 mmol) を 15 分か けて滴下し、混合物を室温で 1 時間撹拌した。反応液を濃縮し、残渣を酢酸エチルに溶解した。 これを 5% 亜硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液および水で洗浄した後、 乾燥、濃縮し、83 (19 g、収率 97%)を油状物として得た。¹H NMR (CDCl₃) δ 1.25 (3H, t, *J* = 7.2 Hz), 2.57 (2H, t, *J* = 7.6 Hz), 2.85 (2H, t, *J* = 7.6 Hz), 3.28 (2H, t, *J* = 8.8 Hz), 4.13 (2H, q, *J* = 7.2 Hz), 4.65 (2H, t, *J* = 8.8 Hz), 6.97 (1H, s), 7.11 (1H, s)。このものはこれ以上精製せずに次の反応に用いた。

6,7-Dibromo-2,3-dihydro-5-benzofuranpropanoic acid ethyl ester (84)。化合物 83 (1.0 g、 3.3 mmol) および鉄 (10 mg) の酢酸 (10 mL) 懸濁液に臭素 (0.80 g。、5.0 mmol) を 15 分かけて滴下 し、混合物を 50 °C で 1 時間撹拌した。反応液をろ過した後ろ液を濃縮し、残渣を酢酸エチルに 溶解した。これを 5% 亜硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液および水で 洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エ チル、3:1) で精製し、84 (0.67 mg、収率 53%) を得た。融点 42-43 °C (酢酸エチルーヘキサンか ら再結晶)。¹H NMR (CDCl₃) δ 1.25 (3H, t, *J* = 7.3 Hz), 2.60 (2H, t, *J* = 7.7 Hz), 3.07 (2H, t, *J* = 7.7 Hz), 3.27 (2H, t, *J* = 8.8 Hz), 4.14 (2H, q, *J* = 7.3 Hz), 4.68 (2H, t, *J* = 8.8 Hz), 7.06 (1H, s)。

6,7-Dibromo-2,3-dihydro-5-benzofuranpropanoic acid (85)。氷冷した **84** (0.62 g、1.6 mmol)のエ タノール (10 mL) 溶液に水酸化カリウム (0.14 g、2.5 mmol)の水溶液を加え、混合物を 90 °C で 1 時間撹拌した。反応液を過剰の 5 N 塩酸に加え、酢酸エチルで抽出した。抽出液を飽和食塩水 で洗浄し、乾燥した後濃縮した。残渣を酢酸エチル—ヘキサンから再結晶し、**85** (0.53 g、収率 93%)を得た。融点 117–118 °C。¹H NMR (CDCl₃) δ 2.67 (2H, t, *J* = 7.5 Hz), 3.08 (2H, t, *J* = 7.5 Hz), 3.27 (2H, t, *J* = 8.8 Hz), 4.68 (2H, t, *J* = 8.8 Hz), 7.07 (1H, s), hidden (1H)。

4,5-Dibromo-1,2,6,7-tetrahydro-8*H***-indeno**[**5,4-***b*]**furan-8-one**(**86**)。前期 **77**の合成と同様の方法 を用いて、**85**から **86**を得た。収率 88%。融点 224–226 °C (クロロホルム─ジイソプロピルエー テルから再結晶)。¹H NMR (CDCl₃) δ 2.72 (2H, t, *J* = 5.9 Hz), 3.05 (2H, t, *J* = 5.9 Hz), 3.55 (2H, t, *J* = 9.0 Hz), 4.79 (2H, t, *J* = 9.0 Hz)。

1,2,6,7-Tetrahydro-8*H*-indeno[5,4-*b*]furan-8-one (87)。化合物 86 (0.35 g、1.1 mmol)の酢酸 (150 mL) 溶液に 10% パラジウム炭素 (0.45 g、50% 含水品) を加え、混合物を水素雰囲気下、室温 で 1 時間撹拌した。反応液をろ過し、ろ液を濃縮した。残渣を酢酸エチルに溶解し、これを水お よび飽和炭酸水素ナトリウム水溶液で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムク ロマトグラフィーで精製し、87 (0.16 g、収率 89%) を得た。融点 133–134 °C (酢酸エチルーへキ サンから再結晶)。¹H NMR (CDCl₃) δ 2.68 (2H, t, *J* = 5.9 Hz), 3.08 (2H, t, *J* = 5.9 Hz), 3.47 (2H, t, *J* = 8.8 Hz), 4.65 (2H, t, *J* = 8.8 Hz), 7.01 (1H, d, *J* = 8.1 Hz), 7.21 (1H, d, *J* = 8.1 Hz)。 *Anal.* Calcd for C₁₁H₁₀O₂: C, 75.84; H, 5.79。Found: C, 75.69; H, 5.75。

(*E*)-(1,2,6,7-Tetrahydro-8*H*-indeno[5,4-*b*]furan-8-ylidene)acetonitrile (88)。前期 78 の合成と同様 の方法を用いて、87 から 88 を得た。収率 60%。融点 149–151 ℃ (メタノールから再結晶)。¹H NMR (CDCl₃) δ 3.00–3.20 (4H, m), 3.31 (2H, t, *J* = 8.8 Hz), 4.67 (2H, t, *J* = 8.8 Hz) 5.45 (1H, t, *J* = 2.4 Hz), 6.86 (1H, d, *J* = 8.1 Hz), 7.11 (1H, d, *J* = 8.1 Hz)。*Anal.* calcd for C₁₃H₁₁NO: C, 79.17; H, 5.62; N, 7.10. Found: C, 79.21; H, 5.82; N, 7.18.

1,6,7,8-Tetrahydro-2H-indeno[5,4-b]furan-8-ethanamine (89)。前期 79 の合成と同様の方法を用 いて、88 から 89 を得た。収率 81%。油状。¹H NMR (CDCl₃) & 1.42–2.35 (4H, m), 2.64–2.98 (4H, m), 3.01–3.38 (3H, m), 4.41–4.70 (2H, m), 6.61 (1H, d, *J* = 8.1 Hz), 6.95 (1H, d, *J* = 8.1 Hz), hidden (2H)。

N-[2-(1,6,7,8-Tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]acetamide (90a)。前記 80a の合成と同様の方法を用いて、89 と無水酢酸から 90a を得た。収率 66%。融点 78–79 °C (酢酸エチルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 1.53–2.12 (3H, m), 1.96 (3H, s), 2.20–2.38 (1H, m), 2.70–2.96 (2H, m), 3.02–3.40 (5H, m), 4.45–4.68 (2H, m), 5.46 (1H, br s), 6.62 (1H, d, *J* = 8.0 Hz), 6.96 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₅H₁₉NO₂: C, 73.44; H, 7.81; N, 5.71。Found: C, 73.55; H, 7.90; N, 5.60。

N-[2-(1,6,7,8-Tetrahydro-2*H*-indeno[5,4-*b*]furan-8-yl)ethyl]propanamide (90b)。前記 80a の合成 と同様の方法を用いて、89 と塩化プロピオニルから 90b を得た。収率 78%。融点 102–104 °C (ジ イソプロピルエーテルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.6 Hz), 1.55– 2.38 (4H, m), 2.18 (2H, q, *J* = 7.6 Hz), 2.69–2.99 (2H, m), 3.02–3.40 (5H, m), 4.42–4.63 (2H, m), 5.61 (1H, br s), 6.62 (1H, d, *J* = 7.8 Hz), 6.95 (1H, d, *J* = 7.8 Hz)。*Anal.* calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40。Found: C, 74.20; H, 8.37; N, 5.25。

N-[2-(1,6,7,8-Tetrahydro-2*H*-indeno[5,4-*b*]furan-8-yl)ethyl]butanamide (90c)。前記 80a の合成と 同様の方法を用いて、89 と塩化ブチリルから 90c を得た。収率 67%。融点 55–57 °C (酢酸エチル から再結晶)。¹H NMR (CDCl₃) δ 0.94 (3H, t, *J* = 7.3 Hz), 1.51–1.90 (4H, m), 1.92–2.08 (1H, m), 2.12 (2H, t, *J* = 7.3 Hz), 2.17–2.38 (1H, m), 2.68–2.98 (2H, m), 3.00–3.40 (5H, m), 4.41–4.68 (2H, m), 5.43 (1H, br s), 6.62 (1H, d, *J* = 8.0 Hz), 6.96 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12。Found: C, 74.59; H, 8.33; N, 5.36。

N-[2-(5-Bromo-2,3-dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide (91)。前記 83 の合成と 同様の方法を用いて、60d から 91 を得た。収率 86%。融点 105–107 (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.6 Hz), 1.49–1.82 (2H, m), 1.98–2.41 (2H, m), 2.21 (2H, q, *J* = 7.6 Hz), 2.71–2.90 (2H, m), 3.00–3.20 (1H, m), 3.39 (2H, q, *J* = 7.1 Hz), 3.88 (3H, s), 5.50 (1H, br s), 6.78 (1H, s), 7.37 (1H, s)。*Anal.* calcd for C₁₅H₂₀BrNO₂: C, 55.23; H, 6.18; N, 4.29。Found: C, 55.15; H, 6.18; N, 4.25。

N-[2-(5-Bromo-2,3-dihydro-6-hydroxy-1*H*-inden-1-yl)ethyl]propanamide (92)。化合物 91 (26 g、 80 mmol) のジクロロメタン (400 mL) 溶液に三臭化ホウ素 (40 g、0.16 mol) を -20 °C で滴下し、 混合物を 1 時間撹拌した。反応液を氷水に注ぎ、酢酸エチルで抽出した。抽出液を水洗、乾燥後、 濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製し、92 (21 g、収率 86%) を得た。融点 149–151 °C (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.5 Hz), 1.50–1.80 (2H, m), 1.90–2.12 (1H, m), 2.20–2.40 (1H, m), 2.24 (2H, q, *J* = 7.5 Hz), 2.65–2.95 (2H, m), 3.00–3.18 (1H, m), 3.38 (2H, q, *J* = 7.1 Hz), 5.82 (1H, br s), 6.86 (1H, s), 7.27 (1H, s), hidden (1H)。*Anal*. calcd for C₁₄H₁₈BrNO₂: C, 53.86; Br, 25.59; H, 5.81; N, 4.49. Found: C, 53.67; Br, 25.44; H, 5.63; N, 4.56.

N-[2-[5-Bromo-2,3-dihydro-6-[(2-methyl-2-propenyl)oxy]-1*H*-inden-1-yl]ethyl]propanamide (93)。 化合物 92 (4.2 g、14 mmol) の DMF (50 mL) 溶液に 60% 水素化ナトリウム (0.65 g、16 mmol) を 徐々に加え、混合物を 30 分間撹拌した。これに塩化メタリル (3.7 g、41 mmol) を加え、混合物 を 0 °C でさらに 90 分間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗、 乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、1:2) で精製し、93 (4.2 g、収率 84%) を得た。融点 105–108 °C (酢酸エチルーヘキサンから再結晶)。 ¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.6 Hz), 1.86 (3H, s), 1.9–2.4 (6H, m), 2.80 (2H, m), 3.08 (1H, m), 3.38 (2H, q, *J* = 7.6 Hz), 4.47 (2H, s), 5.00 (1H, s), 5.17 (1H, s), 5.40 (1H, br s), 6.76 (1H, s), 7.37 (1H, s)。 *Anal.* calcd for C₁₈H₂₄BrNO₂: C, 59.02; H, 6.60; N, 3.82; Br, 21.81。Found: C, 58.88; H, 6.42; N, 3.83; Br, 21.80。

N-[2-[5-Bromo-2,3-dihydro-6-hydroxy-7-(2-methyl-2-propenyl)-1*H*-inden-1-yl]ethyl]propanamide (94)。化合物 93 (4.3 g、12 mmol) の*N*,*N*-ジエチルアニリン (30 mL) 懸濁液をアルゴン雰囲気下、 200–205 °C で 2.5 時間撹拌した。 反応液を濃縮し、残渣を酢酸エチルに溶解した。これを水お よび飽和食塩水で洗浄し、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (ヘキ サン一酢酸エチル 2:1) で精製し、94 (3.9 g、収率 91%) を得た。融点 89–91 °C (酢酸エチルーへ キサンから再結晶)。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.6 Hz), 1.40–1.80 (2H, m), 1.80 (3H, s), 1.90– 2.10 (2H, m), 2.17 (2H, q, *J* = 7.6 Hz), 2.60–3.50 (7H, m), 4.49 (1H, s), 4.79 (1H, s), 5.32 (1H, br s), 5.47 (1H, s), 7.21 (1H, s)。*Anal.* calcd for C₁₈H₂₄BrNO₂: C, 59.02; H, 6.60; N, 3.82; Br, 21.81。Found: C, 59.03; H, 6.39; N, 3.94; Br, 21.93。

N-[2-(4-Bromo-1,6,7,8-tetrahydro-2,2-dimethyl-2*H*-indeno[5,4-*b*]furan-8-yl)ethyl]propanamide (95)。化合物 94 (2.4 g、6.5 mmol) のジクロロメタン (40 mL) 溶液に三フッ化ホウ素ジエチルエ ーテル錯体 (4.1 mL、33 mmol) を氷冷下で加え、混合物を氷冷下で 3 時間撹拌した。反応液を氷 水に注ぎ、酢酸エチルで抽出した。抽出液を水、飽和炭酸水素ナトリウム水で洗浄した後、乾燥、 濃縮した。残渣を酢酸エチル—ジイソプロピルエーテルから再結晶し、95 (2.1 g、収率 89%) を 得た。融点 98–101 °C。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.5 Hz), 1.48 (3H, s), 1.54 (3H, s), 1.76–2.02 (2H, m), 2.19 (2H, q, *J* = 7.5 Hz), 2.25–2.38 (1H, m), 2.62–3.16 (6H, m), 3.32 (2H, q, *J* = 5.3 Hz), 5.41 (1H, br s), 7.11 (1H, s)。*Anal.* calcd for C₁₈H₂₄BrNO₂: C, 59.02; H, 6.60; N, 3.82; Br, 21.81。Found: C, 58.94; H, 6.48; N, 3.98; Br, 21.97。

N-[2-(1,6,7,8-Tetrahydro-2,2-dimethyl-2H-indeno[5,4-b]furan-8-yl)ethyl]propanamide (96)。化合物 95 (1.1 g、2.9 mmol) およびトリエチルアミン (0.81 mL、5.8 mmol) のエタノール (15 mL) 溶液に 10% パラジウム炭素 (0.11 g、50% 含水品) を加え、混合物を水素雰囲気下、室温で1時間、

-121-

さらに 50 °C で 30 分間撹拌した。反応液をろ過した後、ろ液を濃縮した。残渣を酢酸エチル— ジイソプロピルエーテルから再結晶し、96 (0.64 g、収率 76%) を得た。融点 69–72 °C。¹H NMR (CDCl₃) δ 1.14 (3H, s), 1.43 (3H, s), 1.50 (3H, s), 1.60–2.10 (2H, m), 2.13 (2H, q, *J* = 7.5 Hz), 2.24–2.40 (1H, m), 2.60–3.20 (6H, s), 3.35 (2H, q, *J* = 5.3 Hz), 5.39 (1H, br s), 6.55 (1H, d, *J* = 7.6 Hz), 6.95 (1H, d, *J* = 7.6 Hz)。*Anal.* calcd for C₁₈H₂₅NO₂: C, 75.22; H, 8.77; N, 4.87。Found: C, 74.98; H, 8.74; N, 4.96。

N-[2-(2,3-Dihydro-6,7-dimethoxy-1H-inden-1-yl)ethyl]propanamide (97)。化合物 57f (7.2 g、32 mmol) およびトリエチルアミン (6.5 g、65 mmol) の THF (80 mL) 溶液に塩化プロピオニル (3.9 g、42 mmol) を氷冷下で加え、混合物を室温で 3 時間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチルーメタノール、99:1) で精製し、97 (7.7 g、収率 86%) を得た。融点 90–92 °C。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.7 Hz), 1.70–1.94 (3H, m), 2.10–2.36 (1H, m), 2.18 (2H, q, *J* = 7.7 Hz), 2.65–3.20 (3H, m), 3.25–3.55 (2H, m), 3.85 (3H, s), 3.87 (3H, s), 5.90 (1H, br s), 6.75 (1H, d, *J* = 8.0 Hz), 6.90 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₆H₂₃NO₃: C, 69.29; H, 8.36; N, 5.05。Found: C, 69.23; H, 8.09; N, 5.14。

N-[2-(2,3-Dihydro-6,7-dihydroxy-1*H*-inden-1-yl)ethyl]propanamide (98)。前記 92 の合成と同様 の方法を用いて、97 から 98 を得た。収率 73%。融点 98–101 °C (酢酸エチルーヘキサンから再結 晶)。¹H NMR (CDCl₃) δ 1.21 (3H, t, *J* = 7.5 Hz), 1.60–1.98 (3H, m), 2.10–2.30 (1H, m), 2.31 (2H, q, *J* = 7.5 Hz), 2.60–3.15 (3H, m), 3.22–3.40 (1H, m), 3.52–3.75 (1H, m), 5.95 (1H, s), 6.01 (1H, br s), 6.63 (1H, d, *J* = 7.9 Hz), 6.74 (1H, d, *J* = 7.9 Hz), 9.62 (1H, s)。*Anal.* calcd for C₁₄H₁₉NO₃: C, 67.45; H, 7.68; N, 5.62。Found: C, 67.35; H, 7.60; N, 5.66。

N-[2-(7,8-Dihydro-6*H*-indeno[4,5-*d*][1,3]dioxol-8-yl)ethyl]propanamide (99)。60% 水素化ナトリ ウム (0.30 g、7.5 mmol) を氷冷した hexamethylphosphoramide (5 mL) に加え、混合物を 10 分間撹 拌した。これに 98 (0.85 g、3.4 mmol) の hexamethylphosphoramide (5 mL) 溶液を加え、ガスの発 生がおさまるまで混合物を撹拌した。これにジヨードメタン (1.1 g、4.1 mmol) を加え、混合物 を室温で 2 時間撹拌した。反応液に水を加え酢酸エチルで抽出した。抽出液を水洗、乾燥した後 濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製し、99 (0.28 g、収 率 31%) を得た。融点 102–104 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) & 1.16 (3H, t, *J* = 7.7 Hz), 1.70–1.89 (2H, m), 1.90–2.10 (1H, m), 2.15–2.40 (1H, m), 2.20 (2H, q, *J* = 7.7 Hz), 2.68–3.00 (2H, m), 3.13–3.36 (2H, m), 3.40–3.59 (1H, m), 3.68 (1H, br s), 5.92 (2H, dd, *J* = 1.5 Hz, 9.9 Hz), 6.67 (2H, s)。*Anal.* calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36。Found: C, 68.89; H, 7.28; N, 5.42。

N-[2-(2,3,8,9-Tetrahydro-7*H*-indeno[4,5-*b*][1,4]dioxin-9-yl)ethyl]propanamide (100)。化合物 98 (1.0 g、4.0 mmol)のDMF (15 mL)溶液に 1,2-ジブロモエタン (2.9 g、15 mmol)、炭酸カリウム

(1.6 g、12 mmol) および酸化銅(II) (32 mg、0.40 mmol) を加え、混合物を 140 °C で 6 時間撹拌し た。反応液を水に注ぎ、希塩酸で酸性にした後、酢酸エチルで抽出した。抽出液を水洗、乾燥後、 濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製し、100 (0.72 g、 収率 65%) を得た。融点 120–122 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.5 Hz), 1.60–2.00 (3H, m), 2.10–2.32 (1H, m), 2.19 (2H, q, *J* = 7.5 Hz), 2.61–3.01 (2H, m), 3.08–3.53 (3H, m), 4.25 (4H, br s), 5.67 (1H, br s), 6.69 (2H, s)。*Anal.* calcd for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09。Found: C, 69.90; H, 7.61; N, 5.20。

2,3-Dihydro-6-methoxy-7-nitro-1*H*-inden-1-one (101)。濃硫酸 (130 mL) に溶解した 2,3-dihydro-6-methoxy-1*H*-inden-1-one (55c) (30 g、0.19 mol) を −10 °C に冷却した後、硝酸カリウム (24 g、 0.24 mol) の濃硫酸 (100 mL) 溶液を滴下し、混合物を同温度で 20 分間撹拌した。反応液を氷水 に注ぎ、酢酸エチルで抽出した。抽出液を水および飽和炭酸水素ナトリウム水溶液で洗浄し、乾 燥、濃縮した。残渣を酢酸エチルーヘキサンから再結晶し、101 (22 g、収率 58%) を得た。融点 155–158 °C。¹H NMR (CDCl₃) δ 2.78 (2H, t, *J* = 5.6 Hz), 3.13 (2H, t, *J* = 5.6 Hz), 3.94 (3H, s), 7.34 (1H, d, *J* = 8.4 Hz), 7.56 (1H, d, *J* = 8.4 Hz)。*Anal.* calcd for C₁₀H₉NO₄: C, 57.97; H, 4.38; N, 6.76。Found: C, 57.85; H, 4.27; N, 6.73。

(*E*)-(2,3-Dihydro-6-methoxy-7-nitro-1*H*-inden-1-ylidene)acetonitrile (102)。前記 78 の合成と同様 の方法を用いて、101 から 102 を得た。収率 84%。融点 138–141 °C (酢酸エチルージイソプロピ ルエーテルから再結晶)。¹H NMR (CDCl₃) δ 3.00–3.20 (4H, m), 3.92 (3H, s), 5.42 (1H, t, *J* = 2.6 Hz), 7.14 (1H, d, *J* = 8.6 Hz), 7.43 (1H, d, *J* = 8.6 Hz)。*Anal.* calcd for C₁₂H₁₀N₂O₃: C, 62.61; H, 4.38; N, 12.17。 Found: C, 62.46; H, 4.18; N, 12.20。

(7-Amino-2,3-dihydro-6-methoxy-1*H*-inden-1-ylidene)acetonitrile (103)。前記 76 の合成と同様の 方法を用いて、102 から 103 を得た。収率 79%。融点 119–121 °C (酢酸エチル―ジイソプロピル エーテルから再結晶)。¹H NMR (CDCl₃) δ 2.90–3.20 (4H, m), 3.87 (3H, s), 4.23 (2H, br s), 5.60 (1H, t, *J* = 2.2 Hz), 6.69 (1H, d, *J* = 8.0 Hz), 6.84 (1H, d, *J* = 8.0 Hz)。

7-Amino-2,3-dihydro-6-methoxy-1*H***-inden-1-ethanamine** (104)。前記 79 の合成と同様の方法を 用いて、103 から 104 を得た。油状。定量的。このものはこれ以上精製せずに次の反応に用いた。

N-[2-(7-Amino-2,3-dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide (105) 。 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (3.3 g、 17 mmol) および 1-hydroxybenzotriazole monohydrate (2.2 g、 14 mmol) の DMF (30 mL) 溶液にプロピオン酸 (0.85 g、 12 mmol) を加え、 混合物を室温で 1 時間撹拌した。反応液を 0 ℃ に冷却し、104 (2.0 g、 9.7 mmol) の DMF (10 mL) 溶液を加え、室温で 30 分間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を希 塩酸で抽出した後、水層を 4 N 水酸化ナトリウム水溶液で pH10 に調製した。これを酢酸エチル で抽出した後、抽出液を乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (酢酸エ チルーエタノール、10:1) で精製し、105 (1.0 g、収率 40%) を得た。融点 71–73 °C (酢酸エチル ージイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.09 (3H, t, *J* = 7.5 Hz), 1.6–2.0 (3H, m), 2.12 (2H, q, *J* = 7.5 Hz), 2.25 (1H, m), 2.7–3.2 (3H, m), 3.34 (2H, q, *J* = 5.0 Hz), 3.80 (2H, br s), 3.83 (3H, s), 5.67 (1H, br s), 6.59 (1H, d, *J* = 8.0 Hz), 6.66 (1H, d, *J* = 8.0 Hz)。

N-[2-(7-Amino-2,3-dihydro-6-hydroxy-1*H*-inden-1-yl)ethyl]propanamide (106)。前記 98 の合成と 同様の方法を用いて、105 から 106 を得た。収率 88%。油状。¹H NMR (CDCl₃) δ 1.11 (3H, t, *J* = 7.5 Hz), 1.60–2.00 (3H, m), 2.14 (2H, q, *J* = 7.5 Hz), 2.23 (1H, m), 2.70–2.90 (2H, m), 3.19 (1H, m), 3.34 (2H, q, *J* = 5.1 Hz), 4.10 (2H, br s), 5.69 (1H, br s), 6.52 (1H, d, *J* = 7.6 Hz), 6.60 (1H, d, *J* = 7.6 Hz), hidden (1H)。

N-[2-(7,8-Dihydro-6*H*-indeno[4,5-*d*][1,3]oxazol-8-yl)ethyl]propanamide (107)。化合物 106 (0.67 g、 2.7 mmol) のメタノール (5 mL) 溶液にオルトギ酸メチル (7.4 mL、67 mmol) および飽和塩化水 素メタノール溶液 (1.4 mL) を氷冷下で加え、混合物を室温で 30 分間、60 °C でさらに 1 時間撹 拌した。反応液を氷水に注ぎ、クロロホルムで抽出した。抽出液を水および飽和炭酸水素ナトリ ウム水溶液で洗浄した後、乾燥、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (クロ ロホルム—メタノール、20:1) で精製し、107 (0.43 g、収率 61%) を得た。融点 mp 81–84 °C (酢 酸エチル—ジイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.20 (3H, t, *J* = 7.5 Hz), 1.80– 2.10 (3H, m), 2.27 (2H, q, *J* = 7.5 Hz), 2.37–2.53 (1H, m), 2.80–3.20 (3H, m), 3.55–3.80 (2H, m), 6.93 (1H, br s), 7.25 (1H, d, *J* = 8.8 Hz), 7.40 (1H, d, *J* = 8.8 Hz), 8.09 (1H, s)。*Anal.* calcd for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.84。Found: C, 69.76; H, 6.90; N, 10.76。

N-[2-[5-Bromo-2,3-dihydro-6-[(2-propynyl)oxy]-1*H*-inden-1-yl]ethyl]propanamide (108)。前記 93 の合成と同様の方法を用いて、92 と臭化プロパルギルから 108 を得た。収率 99%。融点 104– 107 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.6 Hz), 1.50–2.40 (6H, m), 2.55 (1H, t, *J* = 2.3 Hz), 2.7–3.2 (3H, m), 3.38 (2H, t, *J* = 7.6 Hz), 4.76 (2H, d, *J* = 2.3 Hz), 5.48 (1H, br s), 6.93 (1H, s), 7.38 (1H, s)。 *Anal.* calcd for C₁₇H₂₀BrNO₂: C, 58.30; H, 5.76; N, 4.00; Br, 22.81。 Found: C, 58.13; H, 5.63; N, 4.08; Br, 22.63。

N-[2-(5-Bromo-3,7,8,9-tetrahydrocyclopenta[f]chromen-9-yl)ethyl]propanamide (109)。 化合物 108 (2.9 g、8.4 mmol) のブロモベンゼン (30 mL) 溶液をアルゴン雰囲気下、封管中、200 °C で 18 時間撹拌した。反応液を室温に戻した後、濃縮した。残渣をシリカゲルカラムクロマトグラ フィー (酢酸エチル) で精製し、109 (2.6 g、収率 88%) を得た。融点 110-111 °C (酢酸エチルー ヘキサンから再結晶)。 ¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.5 Hz), 1.50-2.50 (5H, m), 2.60-3.10 (3H, m), 3.15-3.25 (1H, m), 3.32 (2H, q, *J* = 7.5 Hz), 4.80-4.90 (2H, m), 5.40 (1H, br s), 5.88 (1H, dt, *J* = 10 Hz, 3.8 Hz), 6.45 (1H, dd, *J* = 1.6 Hz, 9.8 Hz), 7.18 (1H, s)。*Anal.* calcd for C₁₇H₂₀BrNO₂: C, 58.30; H, 5.76; N, 4.00; Br, 22.81。Found: C, 58.17; H, 5.54; N, 3.98; Br, 22.65。 *N*-[2-(1,2,3,7,8,9-Hexahydrocyclopenta[*f*]chromen-9-yl)ethyl]propanamide (110)。化合物 109 (0.21 g、0.60 mmol)のエタノール (5 mL)溶液に 10% パラジウム炭素 (0.20 g、50% 含水品)を加え、 混合物を水素雰囲気下、室温で 3 時間撹拌した。反応液をろ過し、ろ液を濃縮した。残渣シリカ ゲルカラムクロマトグラフィー (ヘキサン一酢酸エチル、1:1)で精製し、110 (0.14 g、収率 85%) を得た。融点 110–111 ℃ (酢酸エチルージイソプロピルエーテルから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.6 Hz), 1.80–2.10 (6H, m), 2.15 (2H, q, *J* = 7.6 Hz), 2.60–3.50 (7H, m), 4.00–4.30 (2H, m), 5.35 (1H, br s), 6.63 (1H, d, *J* = 8.2 Hz), 6.94 (1H, d, *J* = 8.2 Hz)。*Anal.* calcd for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12。Found: C, 74.56; H, 8.25; N, 5.16。

2,3-Dihydro-6-hydroxy-7-nitro-1*H***-inden-1-one** (112)。前記 101 の合成と同様の方法を用いて、 2,3-dihydro-6-hydroxy-1*H*-inden-1-one (111) から 112 を得た。収率 61%。融点 218–220 °C (エタノ ールーへキサンから再結晶)。¹H NMR (CD₃OD) δ 2.37 (2H, t, *J* = 5.5 Hz), 2.74 (2H, t, *J* = 5.5 Hz), 2.95 (1H, s), 6.95 (1H, d, *J* = 8.4 Hz), 7.15 (1H, d, *J* = 8.4 Hz)。

2-[(2,3-Dihydro-4-nitro-3-oxo-1*H***-inden-5-yl)oxy]acetic acid ethyl ester (113)**。前記 93 の合成と同様の方法を用いて、112 から 113 を得た。収率 94%。融点 137–139 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.29 (3H, t, *J* = 7.1 Hz), 2.79 (2H, t, *J* = 6.0 Hz), 3.14 (2H, t, *J* = 6.0 Hz), 4.25 (2H, q, *J* = 7.1 Hz), 4.74 (2H, s), 7.25 (1H, d, *J* = 8.4 Hz), 7.55 (1H, d, *J* = 8.4 Hz)。

2-[(4-Amino-2,3-dihydro-3-oxo-1*H***-inden-5-yl)oxy]acetic acid ethyl ester (114)。前記 76**の合成と 同様の方法を用いて、**113**から **114**を得た。収率 98%。油状。¹H NMR (CDCl₃) δ 1.29 (3H, t, *J* = 7.1 Hz), 2.30–3.00 (4H, m), 4.28 (2H, q, *J* = 7.1 Hz), 4.61 (2H, s), 5.89 (2H, br s), 6.53 (1H, d, *J* = 8.2 Hz), 6.87 (1H, d, *J* = 8.2 Hz)。

7,8-Dihydroindeno[5,4-b][1,4]oxazine-2,9(1*H,3H***)-dione (115)。化合物 114 (8.7 g、35 mmol)のト ルエン (200 mL) 溶液にカリウム** *tert***-ブトキシド (0.40 g、3.6 mmol) を加え、混合物をアルゴン 雰囲気下、12 時間加熱還流した。反応液を室温に戻した後、水に注いだ。希塩酸を加え酸性に して、酢酸エチルで抽出した。抽出液を水洗した後、乾燥、濃縮した。残渣をシリカゲルカラム クロマトグラフィー (酢酸エチルーヘキサン、1:1) で精製し、115 (4.8 g、収率 66%) を得た。融 点 136–139 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 2.74 (2H, t,** *J* **= 5.8 Hz), 3.10 (2H, t,** *J* **= 5.8 Hz), 4.68 (2H, s), 7.01 (1H, d,** *J* **= 7.2 Hz), 7.17 (1H, d,** *J* **= 7.2 Hz), 9.52 (1H, br s)。**

(2,3,7,8-Tetrahydro-2-oxoindeno[5,4-*b*][1,4]oxazin-9(1*H*)-ylidene)acetonitrile (116)。前記 78 の合 成と同様の方法を用いて、115 から 116 を得た。収率 86%。融点 158–161 °C (クロロホルムから 再結晶)。¹H NMR (CDCl₃) δ 3.00–3.20 (4H, m), 4.62 (2H, s), 5.62 (1H, t, *J* = 2.3 Hz), 6.97 (1H, d, *J* = 8.2 Hz), 7.06 (1H, d, *J* = 8.2 Hz), 8.07 (1H, br s)。*Anal.* calcd for C₁₃H₁₀N₂O₂: C, 69.02; H, 4.46; N, 12.38。 Found: C, 69.22; H, 4.59; N, 12.11。

9-(2-Aminoethyl)-1,7,8,9-tetrahydroindeno[5,4-b][1,4]oxazin-2(3H)-one (117)。化合物 116 (3.0 g、

13 mmol) を飽和アンモニアエタノール溶液 (300 mL) に溶解し、Raney-nickel (14 g) を加えて水 素 (480 kPa) 雰囲気下、40 °C で 6 時間撹拌した。反応液をろ過し、ろ液を濃縮した。残渣に酢 酸エチル (50 mL) を加え、2 N 塩酸 (50 mL) で抽出した。抽出液を4 N 水酸化ナトリウム水溶 液で塩基性にして、クロロホルム—メタノール (10:1) で抽出した。抽出液を乾燥した後、濃縮 した。残渣を酢酸エチル—ジイソプロピルエーテルから再結晶し、117 (2.0 g、収率 62%) を得た。 融点 128–134 °C。¹H NMR (CDCl₃) δ 1.40–1.90 (6H, m), 2.20–2.50 (2H, m), 2.70 (1H, dd, *J* = 8.0 Hz, 15.4 Hz), 2.90–3.00 (2H, m), 3.40 (1H, q, *J* = 7.9 Hz), 4.44 (1H, d, *J* = 15.0 Hz), 4.58 (1H, d, *J* = 15.0 Hz), 6.75 (1H, d, *J* = 8.0 Hz), 6.79 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₃H₁₆N₂O₂• 0.25 H₂O: C, 65.94; H, 7.02; N, 11.83。Found: C, 65.76; H, 6.83; N, 11.91。

1,2,3,7,8,9-Hexahydroindeno[5,4-b][1,4]oxazin-9-ethanamine (118)。化合物 117 (1.2 g、 5.3 mmol) の THF (30 mL) 溶液に水素化リチウムアルミニウム (0.81 g、 21 mmol) の THF (5 mL) 懸濁液を 水冷下で滴下し、混合物をアルゴン雰囲気下で 18 時間加熱還流した。反応液を氷冷した後水 (4 mL) を滴下し、セライトろ過した。ろ液を濃縮した後、残渣に酢酸エチル (50 mL) を加え、2 N 塩酸 (50 mL) で抽出した。抽出液を 4 N 水酸化ナトリウム水溶液で塩基性にした後、クロロホ ルムーメタノール (10:1) で抽出した。抽出液を乾燥した後、濃縮し、118 (0.93 g、収率 80%) を 油状物として得た。¹H NMR (CDCl₃) δ 1.10–3.20 (12H, m), 3.41 (2H, m), 4.20 (2H, m), 6.49 (1H, d, *J* = 8.0 Hz), 6.61 (1H, d, *J* = 8.0 Hz)。

N-[2-(1,2,3,7,8,9-Hexahydroindeno[5,4-b][1,4]oxazin-9-yl)ethyl]propanamide (119)。前記 105 の合 成と同様の方法を用いて、118 から 119 を得た。収率 51%。融点 80–83 °C (酢酸エチルーヘキサ ンから再結晶)。¹H NMR (CDCl₃) δ 1.11 (3H, t, *J* = 7.5 Hz), 1.50–2.30 (6H, m), 2.60–3.20 (3H, m), 3.32 (2H, q, *J* = 6.7 Hz), 3.43 (2H, t, *J* = 4.4 Hz), 3.85 (1H, br s), 4.20 (2H, t, *J* = 4.4 Hz), 5.84 (1H, br s), 6.50 (1H, d, *J* = 8.0 Hz), 6.62 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₆H₂₂N₂O₂: C, 70.04; H, 8.08; N, 10.21。 Found: C, 69.97; H, 7.99; N, 10.16。

N-[2-(1,2,3,7,8,9-Hexahydro-2-oxoindeno[5,4-*b*][1,4]oxazin-9-yl)ethyl]propanamide (120)。前記 105 の合成と同様の方法を用いて、118 から 120 を得た。収率 88%。融点 216–219 ℃ (メタノール 一酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 1.18 (3H, d, *J* = 7.5 Hz), 1.50–2.00 (3H, m), 2.10–2.30 (3H, m), 2.70–3.10 (2H, m), 3.30–3.50 (3H, m), 4.59 (2H, s), 5.97 (1H, br s), 6.81 (2H, s), 9.77 (1H, br s)。 *Anal.* calcd for C₁₆H₂₀N₂O₃: C, 66.65; H, 6.99; N, 9.72。Found: C, 66.45; H, 6.86; N, 9.69。

第4章第3節に関する実験

(S)-N-[2-(2,3-Dihydro-6-methoxy-1H-inden-1-yl)ethyl]acetamide ((S)-60c) および (R)-N-[2-(2,3dihydro-6-methoxy-1H-inden-1-yl)ethyl]acetamide ((R)-60c)。Method P。 ラセミ体 60c を HPLC [カ ラム; Ceramospher RU-1 (6.0 mm + 250 mm)、温度; 50 °C、移動層; メタノール、流速; 0.6 mL/min、検出波長; 290 nm、(S)-60c の保持時間; 50.3 min、(R)-60c の保持時間; 45.9 min] によ り光学分割し、(S)-60c および (R)-60c を得た。化合物 (S)-60c: [a]_D²⁰ -1.5° (c 0.35, CHCl₃)。 [a]_{Hg365}²⁰ +80.7° (c 0.35, CHCl₃)。融点 93-94 °C (酢酸エチルーヘキサンから再結晶)。*Anal.* calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00。Found: C, 71.89; H, 8.43; N, 5.92。化合物 (R)-60c: [a]_D²⁰ +1.2° (c 0.30, CHCl₃)。[a]_{Hg365}²⁰ -61.3° (c 0.30, CHCl₃)。95-96 °C (酢酸エチルーヘキサンから再結晶)。 *Anal.* calcd for: C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00。Found: C, 72.00; H, 8.28; N, 5.81。

(*R*)-2,3-Dihydro-6-methoxy-1*H*-indene-1-ethanamine hydrochloride ((*R*)-57c)。Method Q。 アル ゴン雰囲気下、(*R*)-60c (1.0 g、4.3 mmol) およびヒドラジン一水和物 (20 mL) の混合物を 24 時間 加熱還流した。反応液に飽和食塩水を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗 浄し、乾燥、濃縮した。残渣をエタノール (1 mL) に溶解し 4 M 塩化水素エタノール溶液 (1.5 mL) を加えた。ジエチルエーテルを加えて析出した結晶をろ取した後、エタノール―ジエチル エーテルから再結晶し、(*R*)-57 (0.78 g、収率 80%) を得た。[α]_D²⁰ +32.6° (*c* 0.18, H₂O)。融点 183– 185 °C。化合物 (*R*)-57c の光学純度は HPLC [カラム ; CHIRAL-AGP (4.0 mm ϕ × 100 mm)、温度 ; 室温、移動層 ; 10 mM リン酸緩衝液 (pH 7.0)―アセトニトリル (9:1)、流速 ; 0.5 mL/min、検出 波長 ; 280 nm、(*R*)-57c の保持時間 ; 19.2 min、(*S*)-57c ((*R*)-57c の対掌体) の保持時間 ; 23.6 min] により >99% ee と求まった。

(*S*)-2,3-Dihydro-6-methoxy-1*H*-indene-1-ethanamine hydrochloride ((*S*)-57c)。前記 (*R*)-57c の合成と同様の方法を用いて、(*S*)-60c から (*S*)-57c を得た。[α]_D²⁰ –30.0° (*c* 0.15, H₂O)。融点 180– 181 ℃ (エタノール―ジエチルエーテルから再結晶)。化合物 (*R*)-57c の光学純度は (*R*)-57c の分析と同様の条件を用いたキラルカラム HPLC により >99% と求まった。

(*S*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-60d)。前記 60c の合成と 同様の方法を用いて、(*S*)-57c と塩化プロピオニルから (*S*)-60d を得た。収率 70%。[α]_p²⁰ –3.2° (c 1.05, CHCl₃)。 [α]_{Hg365}²⁰ +58.1° (c 1.05, CHCl₃)。融点 78–79 °C (酢酸エチルージイソプロピルエーテ ルから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.8 Hz), 1.50–1.80 (2H, m), 1.98–2.40 (2H, m), 2.20 (2H, q, *J* = 7.6 Hz), 2.68–2.97 (2H, m), 3.04–3.20 (1H, m), 3.39 (2H, dd, *J* = 7.2 Hz, 13.2 Hz), 3.79 (3H, s), 5.45 (1H, br s), 6.68–6.76 (2H, m), 7.12 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66。Found: C, 72.69; H, 8.64; N, 5.70。

(*R*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide ((*R*)-60d)。前記 60c の合成と 同様の方法を用いて、(*R*)-57c と塩化プロピオニルから (*R*)-60d を得た。収率 71%。[α]_D²⁰ +3.9° (*c* 0.50, CHCl₃)。[α]_{Hg365}²⁰ –50.2° (*c* 0.50, CHCl₃)。融点 79–80 °C (酢酸エチル―ジイソプロピルエー テルから再結晶)。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.6 Hz), 1.52–1.80 (2H, m), 1.98–2.40 (2H, m), 2.19 (2H, q, *J* = 7.6 Hz), 2.69–2.97 (2H, m), 3.03–3.18 (1H, m), 3.39 (2H, dd, *J* = 7.2 Hz, 13.2 Hz), 3.79 (3H, s), 5.44 (1H, br s), 6.67–6.76 (2H, m), 7.11 (1H, d, *J* = 7.8 Hz)。*Anal.* calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.73; H, 8.61; N, 5.66.

(*S*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]butanamide ((*S*)-60e)。前記 60c の合成と同様の方法を用いて、(*S*)-57c と塩化ブチリルから (*S*)-60e を得た。収率 94%。[α]_D²⁰ –2.9° (*c* 1.00, CHCl₃)。[α]_{Hg365}²⁰ +58.4° (*c* 1.00, CHCl₃)。融点 98–99 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 0.94 (3H, t, *J* = 7.2 Hz), 1.50–1.80 (4H, m), 1.96–2.13 (1H, m), 2.14 (2H, t, *J* = 7.4 Hz), 2.22–2.40 (1H, m), 2.70–2.95 (2H, m), 3.03–3.19 (1H, m), 3.33–3.45 (2H, m), 3.79 (3H, s), 5.44 (1H, br s), 6.67–6.75 (2H, m), 7.11 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₆H₂₃NO₂: C, 73.53; H, 8.87; N, 5.36。 Found: C, 73.28; H, 8.81; N, 5.23。

(*R*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]butanamide ((*R*)-60e)。前記 60c の合成と 同様の方法を用いて、(*R*)-57c と塩化ブチリルから (*R*)-60e を得た。収率 74%。[α]_D²⁰ +2.3° (*c* 0.54, CHCl₃)。 [α]_{Hg365}²⁰ -50.4° (*c* 0.54, CHCl₃)。融点 97-98 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 0.95 (3H, t, *J* = 7.2 Hz), 1.50–1.80 (4H, m), 1.97–2.13 (1H, m), 2.14 (2H, t, *J* = 7.4 Hz), 2.23–2.41 (1H, m), 2.70–2.96 (2H, m), 3.03–3.19 (1H, m), 3.33–3.45 (2H, m), 3.79 (3H, s), 5.43 (1H, br s), 6.67–6.75 (2H, m), 7.11 (1H, d, *J* = 7.8 Hz)。*Anal.* calcd for C₁₆H₂₃NO₂: C, 73.53; H, 8.87; N, 5.36。 Found: C, 73.23; H, 8.71; N, 5.17。

(*S*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide ((*S*)-60h)。前記 (*E*)-61a の合成と同様の方法を用いて、(*S*)-57c と無水トリフルオロ酢酸から (*S*)-60h を得た。収 率 90%。[α]_D²⁰-3.2° (*c* 1.03, CHCl₃)。融点 65–66 °C (ジイソプロピルエーテルーへキサンから再結 晶)。¹H NMR (CDCl₃) δ 2.03–2.20 (1H, m), 2.22–2.41 (1H, m), 2.70–2.96 (2H, m), 3.06–3.21 (1H, m), 3.50 (2H, q, *J* = 7.2 Hz), 3.79 (3H, s), 6.31 (1H, br s), 6.68–6.75 (2H, m), 7.12 (1H, d, *J* = 8.4 Hz)。*Anal.* calcd for C₁₄H₁₆F₃NO₂: C, 58.53; H, 5.61; N, 4.88。Found: C, 58.39; H, 5.72; N, 4.88。

(*R*)-*N*-[2-(2,3-Dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]-2,2,2-trifluoroacetamide ((*R*)-60h)。前記 (*E*)-61a の合成と同様の方法を用いて、(*R*)-57c と無水トリフルオロ酢酸から (*R*)-60h を得た。収 率 70%。[α]_D²⁰ +2.0° (*c* 0.29, CHCl₃)。[α]_{Hg365}²⁰ –51.8° (*c* 0.29, CHCl₃)。融点 65–66 °C (ジイソプロ ピルエーテルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 1.62–1.82 (2H, m), 2.04–2.19 (1H, m), 2.22–2.40 (1H, m), 2.71–2.96 (2H, m), 3.06–3.21 (1H, m), 3.50 (2H, q, *J* = 7.2 Hz), 3.79 (3H, s), 6.32 (1H, br s), 6.68–6.75 (2H, m), 7.12 (1H, d, *J* = 8.4 Hz)。*Anal.* calcd for C₁₄H₁₆F₃NO₂: C, 58.53; H, 5.61; N, 4.88。Found: C, 58.48; H, 5.75; N, 4.81。

(S)-4-Bromo-N-[2-(2,3-dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]benzamide ((S)-60o)。前記 60c の 合成と同様の方法を用いて、(S)-57c と塩化 *p*-ブロモベンゾイルから (S)-60o を得た。収率 94%。 [α]_D²⁰ +5.8° (*c* 0.52, CHCl₃)。 [α]_{Hg365}²⁰ +98.4° (*c* 0.52, CHCl₃)。融点 136–138 °C (エタノールから再 結晶)。¹H NMR (CDCl₃) δ 1.62–1.96 (2H, m), 2.03–2.24 (1H, m), 2.27–2.43 (1H, m), 2.68–2.96 (2H, m), 3.11–3.30 (1H, m), 3.55–3.62 (2H, m), 3.77 (3H, s), 6.10 (1H, br s), 6.68–6.78 (2H, m), 7.12 (1H, d, *J* = 8.2 Hz), 7.55 (4H, s)。*Anal.* calcd for C₁₉H₂₀BrNO₂: C, 60.97; H, 5.39; N, 3.74。Found: C, 60.86; H, 5.22; N, 3.68。得られた (*S*)-60o を用いて X 線結晶構造解析を行った結果、インダン環 1 位の立体は *S* 配置であることが明らかとなった。測定条件および結晶学データを Table 12 に示す。

(*R*)-*N*-[2-(1,6,7,8-Tetrahydro-2*H*-indeno[5,4-*b*]furan-8-yl)ethyl]propanamide ((*R*)-90b)。ラセミ体 90b を HPLC [カラム; Ceramospher RU-1 (10 mmφ × 250 mm)、温度; 50 °C、移動層; メタノール、 流速; 4.4 mL/min] により光学分割し、(*R*)-90b を得た。[α]_D²⁰ +57.8° (*c* 1.01, CHCl₃)。*Anal.* calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40。Found: C, 73.97; H, 7.97; N, 5.47。

(*S*)-60d。Method R。化合物 (*E*)-61a (3.5 g、14 mmol)、Ru(OCOCH₃)₂[(*S*)-binap] (0.12 g、14 mmol) およびメタノール (70 mL) の混合物を脱気した後、オートクレーブ中 (水素 9.1 Mpa 下)、 70 °C で 3 時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー (ヘキ サン一酢酸エチル、1:9) で精製した後、酢酸エチルーヘキサンから再結晶し、(*S*)-60d (2.9 g、収 率 83%) を得た。 [α]_p²⁰ -7.0° (*c* 1.00, ethanol)。融点 76-77 °C。¹H NMR (CDCl₃) δ 1.15 (3H, t, *J* = 7.8 Hz), 1.50–1.80 (2H, m), 1.98–2.40 (2H, m), 2.20 (2H, q, *J* = 7.6 Hz), 2.68–2.97 (2H, m), 3.04–3.20 (1H, m), 3.39 (2H, dd, *J* = 7.2 Hz, 13.2 Hz), 3.79 (3H, s), 5.45 (1H, br s), 6.68–6.76 (2H, m), 7.12 (1H, d, *J* = 8.0 Hz)。*Anal.* calcd for C₁₅H₂₁NO₂: C, H, N。化合物 (*S*)-60d の光学純度は HPLC [力ラム ; CHIRALPAK AS (4.6 mm ϕ × 250 mm)、温度 ; 室温、移動層 ; ヘキサン-2-プロパノールートリフルオロ酢酸 (90:10:0.1)、流速 ; 1.0 mL/min、検出波長 ; 290 nm、(*S*)-60d の保持時間 ; 28.0 min、(*R*)-60d ((*S*)-60d の対掌体) の保持時間 ; 23.6 min] により >99% ee と求まった。

Empirical formula	$C_{19}H_{20}BrNO_2$
Formula weight	374.28
Crystal system	orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (#19)
Lattice parameters	<i>a</i> = 11.425 (1) Å
	<i>b</i> = 29.406 (3) Å
	c = 5.083 (4) Å
	$V = 1707 (1) Å^3$
Calculated density	1.456 g/cm^3
Radiation	Cu–Kα (λ = 1.5418 Å)
Data collection range	$3^{\circ} \leq 2\theta \leq 120^{\circ}$
Scan mode	$2\theta - \omega$
Scan speed	32 °/min
Total reflections	3108
Obserbed reflections ($F \ge 3\sigma F$)	1676
R, Rw	0.0484, 0.1079

Table 12. Summary of Crystal Data and Intensity Collections for (S)-600

(*S*)-*N*-[2-(5-Bromo-2,3-dihydro-6-methoxy-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-91)。前記 83 の 合成と同様の方法を用いて、(*S*)-60d から (*S*)-91 を得た。収率 86%。[α]_D²⁰ +5.2° (*c* 1.00, ethanol)。 融点 105–107 °C (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.7 Hz), 1.49–1.81 (2H, m), 1.98–2.41 (2H, m), 2.21 (2H, q, *J* = 7.7 Hz), 2.69–2.98 (2H, m), 3.00–3.20 (1H, m), 3.39 (2H, q, *J* = 7.3 Hz), 3.88 (3H, s), 5.48 (1H, br s), 6.78 (1H, s), 7.37 (1H, s)。*Anal.* calcd for C₁₅H₂₀BrNO₂: C, 55.23; H, 6.18; N, 4.29。Found: C, 55.15; H, 6.18; N, 4.25。

(*S*)-*N*-[2-(5-Bromo-2,3-dihydro-6-hydroxy-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-92)。前記 72 の 合成と同様の方法を用いて、(*S*)-91 から (*S*)-92 を得た。収率 94%。[α]_D²⁰ +2.7° (*c* 1.00, ethanol)。 融点 146–148 °C (酢酸エチル)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.5 Hz), 1.50–1.80 (2H, m), 1.90– 2.12 (1H, m), 2.20–2.40 (1H, m), 2.24 (2H, q, *J* = 7.5 Hz), 2.65–2.95 (2H, m), 3.00–3.18 (1H, m), 3.38 (2H, q, *J* = 7.1 Hz), 5.82 (1H, br s), 6.86 (1H, s), 7.27 (1H, s), hidden (1H)。*Anal.* calcd for C₁₄H₁₈BrNO₂: C, 53.86; H, 5.81; N, 4.49。Found: C, 53.85; H, 5.78; N, 4.52。

(*S*)-*N*-[2-[5-Bromo-2,3-dihydro-6-(2-propenyl)oxy-1*H*-inden-1-yl]ethyl]propanamide ((*S*)-121)。前記 93 の合成と同様の方法を用いて、(*S*)-92 と臭化アリルから (*S*)-121 を得た。収率 96%。[α]_D²⁰+3.7° (*c* 1.00, ethanol)。融点 86–87 °C (酢酸エチルーへキサンから再結晶)。¹H NMR (CDCl₃) δ 1.16 (3H, t, *J* = 7.5 Hz), 1.48–1.80 (2H, m), 1.90–2.40 (2H, m), 2.20 (2H, q, *J* = 7.5 Hz), 2.70–2.91 (2H, m), 3.00–3.20 (1H, m), 3.37 (2H, q, *J* = 7.4 Hz), 4.59 (2H, m), 5.25–5.60 (3H, m), 5.97–6.20 (1H, m), 6.76 (1H, s), 7.37 (1H, s)。*Anal.* calcd for C₁₇H₂₂BrNO₂: C, 57.96; H, 6.29; N, 3.98。Found: C, 57.91; H, 6.28; N, 4.04。

(*S*)-*N*-[2-(5-Bromo-2,3-dihydro-6-hydroxy-7-(2-propenyl)-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-122)。前記 94 の合成と同様の方法を用いて、(*S*)-121 から (*S*)-122 を得た。収率 80%。融点 85– 87 °C (酢酸エチルーヘキサンから再結晶)。[α]_D²⁰ –51.3° (*c* 1.00, ethanol)。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.6 Hz), 1.45–2.13 (4H, m), 2.18 (2H, q, *J* = 7.6 Hz), 2.68–3.65 (7H, m), 4.93–5.13 (2H, m), 5.41 (1H, br s), 5.49 (1H, s), 5.89–6.10 (1H, m), 7.20 (1H, s)。*Anal.* calcd for C₁₇H₂₂BrNO₂: C, 57.96; H, 6.29; N, 3.98; Br; 22.68。Found: C, 57.95; H, 6.22; N, 4.00; Br, 22.52。

(*S*)-*N*-[2-(5-Bromo-2,3-dihydro-6-hydroxy-7-(2-hydroxyethyl)-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-123)。化合物 (*S*)-122 (0.59 g、1.7 mmol)のメタノール (30 mL)溶液を –78 °C に冷却し、オ ゾンを反応液が青色を呈するまで吹き込んだ。過剰のオゾンを酸素、次いで窒素を吹き込んで除 去した後、水素化ホウ素ナトリウム (0.51 g、13 mmol)を加え、反応液を撹拌しながら室温に戻 して 1 時間撹拌を続けた。反応液を希塩酸で弱酸性に調製した後、酢酸エチルで抽出した。抽出 液を水洗した後、乾燥、濃縮し、(*S*)-123 (0.59 g、収率 99%)を得た。一部をメタノール一酢酸エ チルから再結晶した。 [α]_D²⁰ –43.7° (*c* 1.00, ethanol)。融点 85–87 °C (メタノール—酢酸エチルから 再結晶)。¹H NMR (CDCl₃) δ 1.13 (3H, t, *J* = 7.5 Hz), 1.40–2.10 (4H, m), 2.17 (2H, q, *J* = 7.5 Hz), 2.62– 3.01 (4H, m), 3.07–3.22 (1H, m), 3.28 (2H, q, J = 6.8 Hz), 3.89 (2H, br s), 5.47 (1H, t, J = 3.7 Hz), 6.31 (1H, br s), 7.20 (1H, s), 9.07 (1H, s). *Anal.* calcd for C₁₆H₂₂BrNO₃: C, 53.94; H, 6.22; N, 3.93; Br, 22.43. Found: C, 53.97; H, 6.09; N, 3.97; Br, 22.40.

(*S*)-*N*-[2-(2,3-Dihydro-6-hydroxy-7-(2-hydroxyethyl)-1*H*-inden-1-yl)ethyl]propanamide ((*S*)-124)。 前記 87 の合成と同様の方法を用いて、(*S*)-123 から (*S*)-124 を得た。収率 91%。[α]_D²⁰ -69.7° (*c* 1.00, ethanol)。融点 144–146 °C (酢酸エチルーヘキサンから再結晶)。¹H NMR (CDCl₃) δ 1.12 (3H, t, *J* = 7.7 Hz), 1.45–2.10 (4H, m), 2.16 (2H, q, *J* = 7.7 Hz), 2.60–3.00 (4H, m), 3.10–3.23 (1H, m), 3.29 (2H, q, *J* = 6.8 Hz), 3.86 (2H, q, *J* = 5.5 Hz), 5.00 (1H, t, *J* = 4.4 Hz), 6.41 (1H, br s), 6.69 (1H, d, *J* = 7.9 Hz), 6.91 (1H, d, *J* = 7.9 Hz), 8.86 (1H, s)。*Anal.* calcd for C₁₆H₂₃NO₃: C, 69.29; H, 8.36; N, 5.05。Found: C, 69.46; H, 8.28; N, 5.11。

(S)-N-[2-(1,6,7,8-Tetrahydro-2*H*-indeno[5,4-*b*]furan-8-yl)ethyl]propanamide ((S)-90b)。 化 合 物 (S)-124 (5.0 g、18 mmol) のピリジン (15 mL) 溶液に -10 °C から-5 °C で塩化メタンスルホニル (1.4 mL、18 mmol) を滴下し、混合物を同温度で 25 分間撹拌した。塩化メタンスルホニル (0.70 mL、9.0 mmol) を滴下し、混合物を同温度でさらに 25 分間撹拌した。反応液に酢酸エチル (10 mL) および飽和炭酸水素ナトリウム水溶液 (10 mL) を 0 °C で加え、室温に戻しながら混合物を 30 分間撹拌した。希塩酸を加えて酢酸エチルで抽出した。抽出液を水洗、乾燥、濃縮した。残 渣をシリカゲルカラムクロマトグラフィー (酢酸エチル) で精製し、(S)-90b (4.0 g、収率 86%) を得た。[α]_D²⁰ –57.8° (*c* 1.00, chloroform)。融点 113–115 °C (酢酸エチルから再結晶)。¹H NMR (CDCl₃) δ 1.14 (3H, t, *J* = 7.7 Hz), 1.52–2.40 (4H, m), 2.17 (2H, q, *J* = 7.7 Hz), 2.69–3.00 (2H, m), 3.01– 3.40 (5H, m), 4.42–4.64 (2H, m), 5.40 (1H, br s), 6.62 (1H, d, *J* = 7.7 Hz), 6.95 (1H, d, *J* = 7.7 Hz)。*Anal.* calcd for C₁₆H₂₁NO₂: C, 74.10; H, 8.16; N, 5.40。Found: C, 73.86; H, 7.97; N, 5.47。

第5章第2節に関する実験

MT₁受容体に対する親和性。ヒトメラトニン受容体 (MT₁) 発現 Chinese hamster ovary (CHO) 細胞は、hMelR7 遺伝子配列を含む発現ベクターを CHO 細胞に導入することにより樹立した。 MT₁ 受容体を発現させた CHO 細胞株を、10% 透析ウシ胎児血清を含む Eagle's minimum essential medium-α (MEM-α) 培地で培養した。細胞を集めて 50 mM Tris-HCl に懸濁した後、遠心 操作 (44,000×g、10 分間) によりペレットを作製した。このペレットを測定用バッファー (50 mM Tris-HCl、pH 7.7) に懸濁し、親和性評価の膜画分として使用した。この膜画分に終濃度 40 pM の 2-[¹²⁵I]-iodomelatonin および被験化合物を加え、総容量 1 mL とした懸濁液を 25 °C で 1 時 間インキュベートした。また、非特異的結合の測定には 10 µM のメラトニンを用いた。インキ ュベート後、氷水で冷却した測定用バッファー (3 mL) を加え、GF/B フィルターでろ過した。 フィルターを測定用バッファー (3 mL×2) で洗浄した後、フィルター上に残った 2-[¹²⁵I]- iodomelatonin の放射活性を測定した。実験は 3 回行い、IC₅₀ 値は化合物の結合阻害率 (%) から log-probit analysis により算出した。*K*i 値は Cheng、Prusoff らの方法 ⁹¹⁾ に従って求めた。

*MT*₃ 受容体に対する親和性。7-8 週齢の雄性 Syrian ハムスター全脳、肝臓、腎臓、脾臓を摘出 し、50 mM Tris-HCl (pH 7.4、4 °C) に懸濁した。ろ過した後、48,000×g で 10 分間遠心分離した。 得られたペレットを氷冷したバッファーで洗浄した後遠心分離し、再び測定用バッファー (50 mM Tris-HCl、pH 7.4、4 °C) に懸濁した。この膜画分に終濃度 100 pM の 2-[¹²⁵]-iodomelatonin お よび被験化合物を加え、総容量 250 μ L とした懸濁液を 4 °C で 60 分間インキュベートした。氷 水で冷却した測定用バッファー (3 mL) を加え、GF/B フィルターでろ過した。フィルターを測 定用バッファー (3 mL×2) で洗浄した後、フィルター上に残った 2-[¹²⁵]-iodomelatonin の放射活 性を測定した。各結合量から 100 μ M のメラトニン存在下における結合量(非特異的結合)を差 し引いた値を特異的結合量とした。実験は 3 回行い、IC₅₀ 値は化合物による結合阻害率 (%) か ら log-probit analysis により算出した。*K*i 値は Cheng、Prusoff らの方法に従って求めた。

第5章第3節に関する実験

MT₁ 受容体に対する親和性。第5章第2節記載の方法により測定した。

MT3 受容体に対する親和性。第5章第2節記載の方法により測定した。

フォルスコリン誘発 cAMP 産生亢進に対する抑制作用。MT₁ 受容体を発現させた CHO 細胞 株を、1 ウェルあたり 5×10^4 個の細胞が含まれるように分注し、10% 透析ウシ胎児血清を含む MEM- α 培地で3日間培養した。細胞を 10 mM HEPES-Na (pH 7.3) を含む Hanks 緩衝液 (1 mL) で2回洗浄し、100 μ M の3-isobutyl-1-methyl xanthine (IBMX) を含む Hanks 緩衝液 (0.5 mL) と 被験化合物を加えた。37 °C で 6 分間インキュベートした後、10 μ M のフォルスコリンおよび 100 μ M の IBMX を加え、さらに 15 分間インキュベートした。55% 過塩素酸 (50 μ L) を加えて 反応を停止し、内容 200 μ L を試験管に移した。1.6 M 水酸化ナトリウム水溶液 (100 μ L) で中和 した後、cAMP 濃度を radioimmunoassay system で測定した。IC₅₀ 値は log-probit analysis により算 出した。

MT₁ 受容体モデルと (S)-90b との結合様式の検討。ウシロドプシン (Protein Data Bank access number 1F88)⁸⁰⁾ の結晶構造を基に、ヒト MT₁ 受容体の三次元モデルを構築した。細胞外ループ 領域は、キメラ実験⁸¹⁾ よりリガンド結合部位と示唆された第二領域のみを含めた。Insight II プ ログラムを用いた系統的な解析結果から得られた低エネルギーコンフォメーションを、Discover プログラムでエネルギー極小化を行い、最安定コンフォメーションを得た。化合物 (S)-90b との 結合様式は、DOCK プログラムを用いた。

ネコにおける睡眠誘発作用。体重 2.5-5.5 kg の雄性成熟ネコ 3 匹、雌性ネコ 5 匹を用いた。ペ ントバルビタール (40 mg/kg, ip) 麻酔下、Snider & Niemer のネコ脳図譜⁹²⁾ に従い大脳皮質前頭 葉、頭頂葉および海馬に脳波記録用電極を、眼電図記録用電極を眼窩骨に埋め込み、筋電図記録 用ステンレス線を背側頚部筋肉内に埋め込んだ。動物は手術から十分回復した後に使用した。動 物は12時間明暗サイクル(午前7時から午後7時まで明期)下で飼育した。すべての実験は電 気的にシールドされた防音実験室で行った。ネコを観察ケージに入れ、脳波 (EEG)、筋電図 (EMG)、眼電図 (EOG) を記録するためのソケットを装着し、室外のポリグラフで記録した。ま た、動物の行動はビデオカメラを通してモニターした。すべての電気情報は記録チャート紙に記 録するとともに、脳波はフーリエ変換により周波数解析を行った。化合物 (S)-90b およびメラト ニンは 0.5% メチルセルロース溶液に懸濁した後カプセルに充填し、午前 9 時 30 分から 10 時 30 分までの時間に経口投与した。対照群には 0.5% メチルセルロース溶液を投与した。投与後 8 時 間の脳波、筋電図、眼電図および行動観察を行った。実際の脳波記録、周波数解析、筋電位、行 動観察を基に、各1分ごとの動物の睡眠覚醒状態を覚醒 (Wakefulness、drowsyを含む)、徐波睡 眠 (slow-wave sleep: SWS) およびレム睡眠 (rapid eye movement: REM) に分類した。クロスオー バー法により、各個体で溶媒投与時と化合物投与時の各ステージの変化を比較した。作用持続に ついては、各時点での群間の鎖を paired t-test (Bonferroniの調整済み)を用いて検定した。

第5章第5節に関する実験

ジアゼパム協調運動障害に対する作用。4 週齢の ICR 系雄性マウスを用いて回転棒試験を行っ た。テストに先立って十分訓練を施し、1 分間に 15 回転する直径 2.5 cm の回転棒に持続して 1 分以上乗れるマウスを実験に供した。各化合物の単独の作用を検討する実験では、各化合物を経 口投与し、最高 3 回の試行を行った。いずれの試行でも 1 分以上回転棒に乗れなかったマウスを、 強調運動障害と判定した。ジアゼパムはテストの 60 分前に、その他の化合物は 30 分前に投与し た。ジアゼパムとの併用投与実験ではジアゼパム 3 mg/kg を投与し、30 分後に被験化合物を投与 した。被験化合物投与 30 分後に同様のテストを行い、協調運動障害の有無を調べた。1 群 12 匹 のマウスを用いた。

引用文献および注

- (a) Kaplan, B.; Brint, S.; Tanabe, J.; Jacewicz, M.; Wang, X-J.; Pulsinelli, W. Temporal Thresholds for Neocortical Infarction in Rats Subjectied to Reversible Focal Cerebral Ischemia. *Stroke* 1991, 22, 1032–1039. (b) Kirino, T. Delayed Neuronal Death in the Gerbil Hippocampus following Ischemia. *Brain Res.* 1982, 239, 57–69. (c) Faden, A. I. Pharmacotherapy in Spinal Cord Injury: A Clinical Review of Recent Developments. *Clin. Neuropharmacol.* 1987, 10, 193–204.
- (a) Diemer, N. H.; Valente, E.; Bruhn, T.; Berg, M.; Jørgensen, M. B.; Johansen, F. F. Glutamate Receptor Transmission and Ischemic Nerve Cell Damage: Evidence for Involvement of Excitatory Mechanisms. *Prog. Brain Res.* 1993, 93, 105–123. (b) Faden, A. I.; Demediuk, P.; Panter, S.; Vind, R. The Role of Excitatory Amino Acids and NMDA Receptors in Traumatic Brain Injury. *Science* 1989, 244, 798–800. (c) Choi, D. W. Ionic Dependence of Glutamate Neurotoxicity. J. *Neurosci.* 1987, 7, 369–379.
- Wauquier, A.; Ashton, D.; Clincke, G. H. C. Brain Ischemia as a Traget for Ca²⁺ Entry Blockers. Ann. N.Y. Acad. Sci. 1988, 522, 478–490.
- 4) Taylor, C. P.; Meldrum, B. S. Na⁺ Channels as Targets for Neuroprotective Drugs. *Trends Pharmacol. Sci.* **1995**, 309–316.
- Abe, K.; Kogure, K. Strong Attenuation of Ischemic and Postischemic Brain Edema in Rats by a Novel Free Radical Scavenger. *Stroke* 1988, 19, 480–485.
- 6) (a) Harik, S. I.; Yoshida, S.; Busto, R.; Ginsberg, M. D. Monoamine Neurotransmitters in Diffuse Reversible Forebrain Ischemia and Early Recirculation: Increased Dopaminergic Activity. *Neurology* 1986, 36, 971–976. (b) Yao, H.; Sadoshima, S.; Ishitsuka, T.; Nagao, T.; Fujishima, M.; Tatsumi, T.; Uchimura, H. Massive Striatal Dopamine in Acute Cerebral Ischemia in Rats. *Experimentia* 1988, 44, 506–508. (c) Weinberger, J.; Nieves-Rosa, J.; Cohen, G. Nerve Terminal Damage in Cerebral Ischemia: Protective Effect of alpha-Methyl-para-tyrosine. *Stroke* 1985, 16, 864–870.
- 7) Demopoulos, H. C.; Flamm, E.; Seligman, M.; Pietronigro, D. D. Oxygen Free Radicals in Central Nervous System Ischemia and Trauma. In *Pathology of Oxygen*: Autor, A. P., Ed.; Academic Press: New York, 1982; pp 127–155.
- 8) (a) Burton, G. W.; Ingold, K. U. Autoxidation of Biological Molecules. 1. The Antioxidant Activity of Vitamin E and Releated Chain-Breaking Phenolic Antioxidants in Vitro. J. Am. Chem. Soc. 1981, 103, 6472-6477. (b) Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, F. L. Lee; Prasad, L.; Ingold, K. U. Autoxidation of Biological Molecules. 4. Maximizing the Antioxidant Activityl of Phenols. J. Am. Chem. Soc. 1985, 107, 7053-7065.
- 9) International Classification of Sleep Disorders (ICSD): In Diagnostic and Coding Manual; Amerian

Sleep Disorder Association; Allen Press Inc.: Lawrence, Kansas, 1990.

- 10) Kales, A.; Scharf, M. B.; Kales, J. D. Rebound Insomnia: A New Clinical Syndrome. *Science* 1978, 201, 1039–1041.
- Herings, R. M. C.; Stricker, B. H. C.; de Boer, A.; Bakker, A.; Strumans, F. Benzodiazepines and the Risk of Falling leading to Femur Fractures. Dosage More Important than Elimination Half-life. Arch. Intern. Med. 1995, 155, 1801–1807.
- (a) Roth, T.; Hartse, K. M.; Saab, P. G.; Piccione, P. M.; Kramer, M. The Effects of Flurazepam, Lorazepam and Triazolam on Sleep and Memory. *Psychopharmacology* 1980, 70, 231-237. (b) Lister, R. G. The Amnesic Action of Benzodiazepines in Man. *Neurosci. Biobehav. Rev.* 1985, 9, 87-94.
- 13) Reiter, R. J. Pineal Melatonin: Cell Biology of its Synthesis and of its Physiological Interactions. *Endocr. Rev.* **1991**, *12*, 151–180.
- (a) Aakerstedt, T.; Froeberg, J. E.; Friberg, Y.; Wetterberg, L. Melatonin Excretion, Body Temperature and Subjective Arousal during 64 Hours of Sleep Deprivation. *Psychoneuroendocrinology* 1979, 4, 219–225. (b) Nakagawa, H.; Sack, R. L.; Lewy, A. J. Sleep Propensity Free-Runs with the Temperature, Melatonin and Cortisol Rhythms in a Totally Blind Person. *Sleep* 1992, *15*, 330–336. (c) Tzischinsky, O.; Shlitner, A.; Lavie, P. The Association between the Nocturnal Sleep Gate and Nocturnal Onset of Urinary 6-Sulfatoxymelatonin. *J. Biol. Rhythms* 1993, *8*, 199–209. (d) Zhdanova, I. V.; Wurtman, R. J. Efficacy of Melatonin as a Sleep-Promoting Agent. *J. Biol. Rhythms* 1997, *12*, 644–650.
- (a) Dollins, A. B.; Zhdanova, I. V.; Wurtman, R. J.; Lynch, H. J.; Deng, M. H. Effect of Inducing Nocturnal Serum Melatonin Concentrations in Daytime on Sleep, Mood, Body Temperature, and Performance. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1824–1828. (b) Sack, R. L.; Lewy, A. J.; Parrott, K.; Singer, C. M.; McArthur, A. J.; Blood, M. L.; Bauer, V. K. Melatonin Analogs and Circadian Sleep Disorders. Eur. J. Med. Chem. 1995, 30, 661s–669s. (c) Zhdanova, I. V.; Wurtman, R. J.; Lynch, H. J.; Ives, J. R.; Dollins, A. B.; Morabito, C.; Matheson, J. K.; Schomer, D. L. Sleep-Inducing Effects of Low Doses of Melatonin Ingested in the Evening. Clin. Pharmacol. Ther. 1995, 57, 552–558. (d) Attenburrow, M. E. J.; Cowen, P. J.; Sharpley, A. L. Low Dose Melatonin Improves Sleep in Healthy Middle-Aged Subjects. Psychopharmacology 1996, 126, 179–181. (e) Garfinkel, D.; Laudon, M.; Zisapel, N. Improvement of Sleep Quality by Controlled-Release Melatonin in Benzodiazepine-Treated Elderly Insomniacs. Arch. Gerontol. Geriatr. 1997, 24, 223–231.
- 16) Ebisawa, T.; Karne, S.; Lerner, M. R.; Reppert, S. M. Expression Cloning of a High-Affinity Melatonin Receptor from *Xenopus* Dermal Melanophores. *Proc. Natl. Acad. Sci. U. S. A.* 1994, 91, 6133–6137.
- (a) Grol, C. J.; Jansen, J. M. The High Affinity Melatonin Binding Site Probed with Conformationally Restricted Ligands-II. Homology Modeling of the Receptor. *Bioorg. Med. Chem.* 1996, 4, 1333-

1339. (b) Spadoni, G.; Stankov, B.; Duranti, A.; Biella, G.; Lucini, V.; Salvatori, A.; Fraschini, F. 2-Substituted 5-Methoxy-*N*-acyltryptamines: Synthesis, Binding Affinity for the Melatonin Receptor, and Evaluation of the Biological Activity. *J. Med. Chem.* **1993**, *36*, 4069–4074. (c) Sugden, D.; Chong, N. W. S.; Lewis, D. F. V. Structure Requirements at the Melatonin Receptor. *Br. J. Pharmacol.* **1995**, *114*, 618–623.

- Faden, A. I.; Salzman, S. Pharmacological Strategies in CNS Trauma. Trends Pharmacol. Sci. 1992, 29–35.
- (a) Karibe, H.; Chen, S. F.; Zarow, G. J.; Gafni, J.; Graham, S. H.; Chan, P. H.; Weinstein, P. R. Mild Intraischemic Hypothermia Suppresses Consumption of Endogenous Antioxidants after Temporary Focal Ischemia in Rats. *Brain Res.* 1994, 649, 12–18. (b) Marsala, M.; Vanicky, I.; Yaksh, T. L. Effect of Graded Hypothermia (27 degrees to 34 degrees C) on Behavioral Function, Histopathology, and Spinal Blood Flow after Spinal Ischemia in Rat. *Stroke*, 1994, 25, 2038–2046.
- 20) (a) Petty, M. A.; Poulet, P.; Haas, A.; Namer, I. J.; Wagner, J. Reduction of Traumatic Brain Injury-induced Cerebral Oedema by a Free Radical Scavenger. *Eur. J. Pharmacol.* 1996, 307, 149–155. (b) Vajragupta, O.; Toasaksiri, S.; Boonyarat, C. Wongkrajang, Y.; Peungvicha, P.; Watanabe, H.; Boonchoong, P. Chroman amide and Nicotinyl amide Derivatives: Inhibition of Lipid Peroxidation and Protection against Head Trauma. *Free Rad. Res.* 2000, 32, 145–155.
- Clemens, J. A.; Phebus, L. A. Dopamine Depletion Protects Striatal Neurons from Ischemia-Induced Cell Death. Life Sci. 1988, 42, 707–713.
- 22) Cadet, J. L.; Sheng, P.; Ali, S.; Rothmann, R.; Carlson, E.; Epstein, C. Attenuation of Methamphetamine-Induced Neurotoxicity in Copper/Zinc Superoxide Dismutase Transgenic Mice. J. Neurochem. 1994, 62, 380-383.
- 23) Schmidt, C. J.; Ritter, J. K.; Sonsalla, P. K.; Hanson, G. R.; Gibb, J. W. Role of Dopamine in the Neurotoxic Effects of Methamphetamine. J. Pharmacol. Exp. Ther. 1985, 233, 539-544.
- 24) Woodword, B.; Zakaria, M. N. M. Effect of Some Free Radical Scavengers on Reperfusion Induced Arrhythmias in the Isolated Rat Heart. J. Mol. Cell Cardiol. 1985, 17, 485–493.
- 25) Takamatsu, H.; Kondo, K.; Ikeda, Y.; Umemura, K. Neuroprotective Effect Depend on the Model of Focal Ischemia following Middle Cerebral Artery Occulusion. *Eur. J. Pharmacol.* 1998, 362, 137–142.
- (a) Hall, E. D.; McCall, J. M.; Means, E. D. Therapeutic Potential of the Lazaroids (21-aminosteroids) in Acute Central Nervous System Trauma, Ischemia and Subarachnoid Hemorrhage. In Advances in Pharmacology Vol 28; August, J. T., Anders, M. W., Murad, F., Coyle, J. T., Eds.; Academic Press: New York, 1994. (b) Jacobsen, E. J.; McCall, J. M.; Ayer, D. E.; VanDoornik, F. J.; Palmar, J. R.; Belonga, K. L.; Braughler, J. M.; Hall, E. D.; Houser, D. J.; Krook, M. A.; Runge, T. A. Novel 21-

Aminosteroids That Inhibit Iron-Dependent Lipid Peroxidation and Protect against Central Nervous System Trauma. J. Med. Chem. 1990, 33, 1145–1151.

- 27) Dawson, D. A.; Masayasu, H.; Graham, D. I.; Macrae, I. M. The Neuroprotective Efficacy of Ebselen (a Glutathione Peroxidase Mimic) on Brain Damage Induced by Transient Focal Cerebral Ischaemia in the Rat. *Neurosci. Lett.* **1995**, *185*,65–69.
- 28) Oshiro, Y.; Sakurai, Y.; Tanaka, T.; Kikuchi, T.; Hirose, T.; Tottori, K. Novel Cerebroprotective Agents with Central Nervous System Stimulating Activity. 2. Synthesis and Pharmacology of the 1-(Acylamino)-7-hydroxyindan Derivatives. J. Med. Chem. 1991, 34, 2014–2023.
- Hall, E. D.; Braughler, J. M.; Yonkers, P. A.; Smith, S. L.; Linseman, K. L.; Means, E. D.; Scherch, H. M.; von Voigtlander, P. F.; Lahti, R. A.; Jacobsen, E. J. U-78517F: A Potent Inhibitor of Lipid Peroxidation with Activity in Experimental Brain Injury and Ischemia. J. Pharmacol. Exp. Ther. 1991, 258, 688-694.
- 30) Grisar, J. M.; Bolkenius, F. N.; Petty, M. A.; Verne, J. 2,3-Dihydro-1-benzofuran-6-ols as Analogues of α-Tocopherol That Inhibit *in Vitro* and *ex Vivo* Lipid Autoxidation and Protect Mice against Central Nervous System Trauma. J. Med. Chem. 1995, 38, 453–458.
- Block, F.; Kunkel, M.; Sontag, K.-H. Posttreatment with EPC-K1, an Inhibitor of Lipid Peroxidation and of Phospholipase A₂ Activity, Reduces Functional Deficits after Global Ischemia in Rats. *Brain Res. Bull.* 1995, 36, 257–260.
- 32) Kikuchi, T.; Tottori, K.; Uwahodo, Y.; Hirose, T.; Miwa, T.; Oshiro, Y.; Morita, S. 7-{4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy}-3,4-dihydro-2(1H)-quinolinone (OPC-14597), A New Putative Antipsychotic Drug with Both Presynaptic Dopamine Autoreceptor Agonistic Activity and Postsynaptic D-2 Receptor Antagonistic Activity. J. Pharmacol. Exp. Ther. 1995, 274, 329–336.
- Merchant, K. M.; Gill, G. S.; Harris, D. W.; Huff, R. M.; Eaton, M. J.; Lookingland, K.; Lutzke, B. S.; Mccall, R. B.; Piercey, M. F.; Schreur, P. J. K. D.; Sethy, V. H.; Smith, M. W.; Svensson, K. A.; Tang, A. H.; Vonvoigtlander, P. F.; Tenbrink, R. E. Pharmacological Characterization of U-101387, A Dopamine D4 Receptor Selective Antagonist. J. Pharmacol. Exp. Ther. 1996, 279, 1392–1403.
- 34) Mellinger, G. D.; Balter, M. B.; Uhlenhuth, E. H. Insomnia and its Treatment. Arch. Gen. Psychiatry 1985, 42, 225–232.
- 35) Sugita, Y.; Taniguchi, M.; Kyotani, K.; Mikami, A.; Tachibana, N.; Terashima, K.; Uruha, S.; Honda, H.; Teshima, Y. Idiopathic REM Sleep Disorder in the Aged. In *Sleep-Wake Disorders*: Meier-Ewert, K.; Okawa, M. eds.; Plenum Press: New York, 1998; pp 131–140.
- 36) Lancel, M.; Cronlein, T. A. M.; Mullerpreuss, P.; Holsboer, F. Pregnenolone Enhanced EEG δ Activity During Non-Rapid Eye Movement Sleep in the Rat, In Contrast to Midazolam. Brain

Res. 1994, 646, 85-94.

- Borbely, A. A.; Tobler, I. Endogenous Sleep-Promoting Substances and Sleep Regulation. *Physiol. Rev.* 1989, 69, 605–670.
- 38) (a) Reiter, R. J. Pineal Melatonin: Cell Biology of its Synthesis and of its Physiological Interactions. *Endocr. Rev.* 1991, 12, 151-180. (b) Sugden, D. Melatonin Biosynthesis in the Mammalian Pineal Grand. *Experientia* 1989, 45, 922–932.
- Rosenthal, N. E.; Sack, D. A.; Jacobsen, F. M.; James, S. P.; Parry, B. L.; Arendt, J.; Tamarkin, L.; Wehr, T. A. Melatonin in Seasonal Affective Disorder and Phototherapy. J. Neural. Transm. Suppl. 1986, 21, 257-267.
- 40) (a) Arendt, J.; Borbely, A. A.; Franey, C.; Wright, J. The Effects of Chronic, Small Doses of Melatonin Given in the Late Afternoon on Fatigue in Man: A Preliminary Study. *Neurosci. Lett.* 1984, 45, 317–321. (b) Wehr, T. A. The Durations of Human Melatonin Secretion and Sleep Respond to Changes in Daylength (Photoperiod). *J. Clin. Endocrinol. Metab.* 1991, 73, 1276–1280.
- (a) Petrie, K.; Conaglen, J. V.; Thompson, L.; Chamberlain, K. Effect of Melatonin on Jet Lag after Long Haul Flights. *Br. Med. J.* 1989, 298, 705–707. (b) Arendt, J. Melatonin in Humans: Jet-Lag and after. *Adv. Pineal Res.* 1991, 5, 299–302. (c) Nickelsen, T.; Lang, A.; Bergau, L. The Effect of 6-, 9- and 11-Hour Time Shifts on Circadian Rhythms: Adaptation of Sleep Parameters and Hormonal Patterns Following the Intake of Melatonin or Placebo. *Adv. Pineal Res.* 1991, 5, 303–306.
- 42) (a) Ying, S. W.; Niles, L. P.; Crocker, C. Human Malignant Melanoma Cell Express High-Affinity Receptors for Melatonin: Antiproliferative Effects of Melatonin and 6-Chloromelatonin. *Eur. J. Pharmacol., Mol. Pharmacol. Sect.* 1993, 246, 89–96. (b) Braczkowski, R.; Zubelewicz, B.; Romanowski, W.; Lissoni, P.; Barni, S. Modulation of Tumor Necrosis Factor-α Toxicity by the Pineal Hormone Melatonin in Metastatic Solid Tumor Patients. *Ann. N. Y. Acad. Sci.* 1995, 768, 334–336. (c) Maestroni, G. J. M. The Immunoneuroendocrine Role of Melatonin. *J. Pineal Res.* 1993, 14, 1–10. (d) Hill, S. M.; Blask, D. E. Effects of the Pineal Hormone Melatonin on the Proliferation and Morphological Characteristics of Human Breast Cancer Cells (MCF-7) in Culture. *Cancer Res.* 1988, 48, 6121–6126.
- (a) Claustrat, B.; Le Bars, D.; Brun, J.; Thivolle, P.; Mallo, C.; Arendt, J.; Chazot, G. Plasma and Brain Pharmacokinetic Studies in Humans after Intravenous Administration of Cold or ¹¹C Labeled Melatonin. *Adv. Pineal Res.* 1989, *3*, 305–310. (b) Le Bars, D.; Thivolle, P.; Vitte, P. A.; Bojkowski, C.; Chazot, G; Arendt, J.; Frackowiak, R. S. J.; Claustrat, B. PET and Plasma Pharmacokinetic Studies after Bolus Intravenous Administration of [¹¹C]Melatonin in Humans. *Nucl. Med. Biol.* 1991, *18*, 357–362.
- 44) TiPS Receptor and Ion Channel Nomenclature Supplement (Vol. 12); Alexander, S. P., Peter, J. A., Eds.; Elsevier: 2001; p 72.

- (a) Reppert, S. M.; Godson, C.; Mahle, C. D.; Weaver, D. R.; Slaugenhaupt, S. A.; Gusella, J. F. Molecular Characterization of a Second Melatonin Receptor Expressed in Human Retina and Brain: the Mel_{1b} Melatonin Receptor. *Proc. Natl. Acad. Sci. U. S. A.* 1995, *92*, 8734–8738. (b) Liu, C.; Weaver, D. R.; Jin, X.; Shearman, L. P.; Pieschl, R. L.; Gribkoff, V. K.; Reppert, S. M. Molecular Dissection of Two Distinct Actions of Melatonin on the Suprachiasmatic Circadian Clock. *Neuron* 1997, *19*, 91–102. (c) Dubocovich, M. L.; Yun, K.; Al-ghoul, W. M.; Benloucif, S.; Masana, M. I. Selective MT₂ Melatonin Receptor Antagonists Block Melatonin-Mediated Phase Advances of Circadian Rhythms. *FASEB. J.* 1998, *12*, 1212–1220.
- 46) (a) Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J. -M.; Lefoulon, F.; Fauchère, J. -L.; Delagrange, P.; Canet, E.; Boutin, J. A. Identification of the Melatonin-binding site MT₃ as the Quinone Reductase 2. J. Biol. Chem. 2000, 275, 31311–31317. (b) Nosjean, O.; Nicolas, J. -P.; Klupsch, F.; Delagrange, P.; Canet, E.; Boutin, J. A. Comparative Pharmacological Studies of Melatonin Receptors: MT₁, MT₂ and MT₃/QR₂. Tissue Distribution of MT₃/QR₂. Biochem. Pharmacol. 2001, 61, 1369–1379.
- 47) Vakkuri, O.; Leppaluoto, J.; Vuolteenaho, O. Development and Validation of a Melatonin Radioimmunoassay using Radioiodinated Melatonin as Tracer. Acta Endocrinol. 1984, 106, 152– 157.
- 48) Dubbocovich, M. Melatonin Receptors: Are There Multiple Subtypes? *Trends Pharmacol. Sci.* **1995**, 50–56.
- 49) (a) Depreux, P.; Lesieur, D.; Mansour, H. A.; Morgan, P.; Howell, H. E.; Renard, P.; Caignard, D.-H.; Pfeiffer, B.; Delagrange, P.; Guardiola, B.; Yous, S.; Demarque, A.; Adam, G.; Andrieux, J. Synthesis and Structure-Activity Relationships of Novel Naphthalenic and Bioisosteric Related Amidic Derivatives as Melatonin Receptor Ligands. J. Med. Chem. 1994, 37, 3231–3239. (b) Langlois, M.; Brémont, B.; Shen, S.; Poncet, A.; Andrieux, J.; Sicsic, S.; Serraz, I.; Mathé-Allainmat, M.; Renard, P.; Delagrange, P. Design and Synthesis of New Naphthalenic Derivatives as Ligands for 2[¹²⁵1]Iodomelatonin Binding Site. J. Med. Chem. 1995, 38, 2050–2060.
- 50) (a) Copinga, S.; Tepper, P. G.; Grol, C. J.; Horn, A. S.; Dubocovich, M. L. 2-Amido-8-methoxytetralins: A Series of Nonindolic Melatonin-like Agents. *J. Med. Chem.* 1993, *36*, 2891–2898.
 (b) Jansen, J. M.; Copinga, S.; Gruppen, G.; Molinari, E. J.; Dubocovich, M. L.; Grol, C. J. The High Affinity Melatonin Binding Site Probed with Conformationally Restricted Ligands-I. Pharmacophore and Minireceptor Models. *Bioorg. Med. Chem.* 1996, *4*, 1321–1332.
- 51) Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto, T.; Sakamoto, J.; Doi, T.; Nagai, Y.; Aono, T. 5-Aminocoumarans: Dual Inhibitors of Lipid Peroxidation and Dopamine Release with Protective Effects against Central Nervous System Trauma and Ischemia. J. Med. Chem. 1997, 40, 559–573.
- 52) Pearson, D. E.; Wysong, R. D.; Breder, C. V. The ortho Bromination of Phenols. J. Org. Chem. 1967,

32, 2358-2360.

- 53) Weingarten, H.; Chupp, J. P.; White, W. A. Ketimine Syntheses. Use of Titanium Tetrachloride in a New Procedure for Their Preparation. J. Org. Chem. 1967, 32, 3246–3249.
- 54) Borman, S. FDA Issues Flexible Policy on Chiral Drugs. Chem. Eng. News 1992, Jun 15, 5.
- 55) Duggan, A. J. Insecticidal Pyrazoline-1-carboxamides, Compositions Containing Them, and Their Use. U.S. US 4,767,779, 1988. [Chem. Abstr. 1989, 111, 39359j].
- 56) Harada, H.; Matsushita, Y.; Yodo, M.; Nakamura, M.; Yonetani. Y. Studies on Uricosuric Diuretics. II. 6,7-Dichloro-4-nitro-, 6,7-Dichloro-4-sulfamoyl- and 6,7-Dichloro-4-acyl-2,3-dihydrobenzofuran-2carboxylic acids. *Chem. Pharm. Bull.* **1987**, *35*, 3215–3226.
- 57) Blade Font, A.; Escartin Tomas, P.; Palop Palop, D.; Mendoza Villela, E. Dihydrobnezofurans with Analgesic Action. Span. ES 512,355, 1983. [Chem. Abstr. 1984, 100, 85582x].
- 58) Fukatsu, K.; Fujii, N.; Ohkawa, S. Synthesis of TAK-218 using (R)-2-Methylglycidyl tosylate as a Chiral Building Block. *Tetrahedron: Asymmetry* **1999**, *10*, 1521–1526.
- Uozumi, Y.; Kato, K.; Hayashi, T. Catalytic Asymmetric Wacker-Type Cyclization. J. Am. Chem. Soc. 1997, 119, 5063–5064.
- 60) Yodo, M.; Matsushita, Y.; Ohsugi, E.; Harada, H. Optical Resolution and Chiral Synthesis of Methyl 6,7-Dichloro-2,3-dihydrobenzo[b]furan-2-carboxylate. *Chem. Pharm. Bull.* **1988**, *36*, 902–913.
- 61) Eis, M. J.; Wrobel, J. E.; Ganem, B. Mechanism and Synthetic Utility of Boron Trifluoride Etherate Promoted Organolithium Additions. J. Am. Chem. Soc. 1984, 106, 3693–3694.
- 62) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. Catalytic Asymmetric Epoxidation and Kinetic Resolution: Modified Procedures Including in Situ Derivatization. J. Am. Chem. Soc. 1987, 109, 5765–5780.
- 63) シフト試薬を用いた¹H NMR により光学純度を決定した。
- 64) Wershofen, S.; Claßen, A.; Scharf, H.-D. Stereoselective Acetalization of 1,1- and 1,2-disubstituted Diols as Common Principle in the Synthesis of the Enantiomers of the Bicyclic Acetal Pheromones endo- and exo-Brevicomin and Frontalin. *Liebigs Ann. Chem.* 1989, 9–18.
- 65) 化合物 53 の両光学活性体は、キラルカラム HPLC で分離することができなかった。従って、得られた 53 を用いて工程を進め、再結晶前の (S)-24n 遊離塩基の光学純度をもって 53 の光学純度とした。
- 66) Behnisch, R. Chroman Compounds. U.S. US 2,334,743, 1939. [Chem. Abstr. 1944, 38, 2795⁴].
- 67) Okamoto, K.; Imada, I.; Imamoto, T. Effect of 6-(10-Hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4benzoquinone (CV-2619) on Microsome Lipid Peroxidation. *Chem. Pharm. Bull.* 1986, 34, 2821– 2827.
- 68) Schmidt, C. J.; Ritter, J. K.; Sonsalla, P. K.; Hamson, G. R.; Gibb, J. W. Role of Dopamine in the Neurotoxic Effects of Methamphetamine. J. Pharmacol. Exp. Ther. 1985, 233, 539-544.

- 69) (a) Pulsinelli, W. A.; Brierley, J. B. A New Model of Bilateral Hemispheric Ischemia in the Unanesthetized Rat. Stroke 1979, 10, 267–272. (b) Fukuda, N.; Ikeda, K.; Saji, Y. Effects of CDPcholine (Nicolin) on the Neurological Deficits in the Rats with Experimental Cerebral Ischemia. Jpn. Pharmacol. Ther. 1985, 13, 5021–5029.
- 70) Ohkawa, S.; Terao, S.; Terashita, Z.; Shibouta, Y.; Nishikawa, K. Dual Inhibitors of Thromboxane A₂ Synthase and 5-Lipoxygenase with Scavenging Activity of Oxygen Species. Synthesis of a Novel Series of (3-Pyridylmethyl)benzoquinone Derivatives. J. Med. Chem. 1991, 34, 267–276.
- 71) (a) Rubin, J. J.; Willmore, L. T. Prevention of Iron-Induced Epileptiform Discharges in Rats by Treatment with Antiperoxidants. *Exp. Neurol.* 1980, 67, 472–480. (b) Willmore, L. T.; Rubin, J. J. Effects of Antiperoxidants on FeCl₂-Induced Lipid Peroxidation and Focal Edema in Rat Brain. *Exp. Neurol.* 1984, 83, 62–70.
- 72) Weiss, J. Catalytic Decomposition of Hydrogen peroxide on Different Metals. *Trands Faraday Soc.* 1935, 31, 1547–1557.
- 73) Levin, V. A. Relationship of Octanol/Water Partition Coefficient and Molecular Weight to Rat Brain Capillary Permeability. J. Med. Chem. 1980, 23, 682–684.
- Fukatsu, K.; Uchikawa, O.; Kawada, M.; Yamano, T.; Yamashita, M.; Kato, K.; Hirai, K.; Hinuma, S.; Miyamoto, M.; Ohkawa, S. Synthesis of a Novel Series of Benzocycloalkene Derivatives as Melatonin Receptor Agonists. J. Med. Chem. 2002, 45, 4212–4221.
- 75) Reeve, W.; Eareckson III, W. M. Preparation of Homopiperonylamine by Hydrogenation of 3,4-Methylenedioxybenzyl Cyanide over Raney Cobalt Catalyst. J. Am. Chem. Soc. 1950, 72, 3299–3300.
- 76) Belletire, J. L.; Howard, H.; Donahue, K. A Facile Synthesis of Phenylacetic Acid from Aryl Ketones. Synth. Commun. 1982, 12, 763–770.
- 77) Uchikawa, O.; Fukatsu, K.; Tokunoh, R.; Kawada, M.; Matsumoto, K.; Imai, Y.; Hinuma, S.; Kato, K.; Nishikawa, H.; Hirai, K.; Miyamoto, M.; Ohkawa, S. Synthesis of a Novel Series of Tricyclic Indan Derivatives as Melatonin Receptor Agonists. J. Med. Chem. 2002, 45, 4222–4239.
- 78) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. Synthesis of 2,2'-Bis(dipheny1phosphino)-1,1'-binaphthyl (BINAP), an Atropisomeric Chiral Bis(triaryl)phosphine, and Its Use in the Rhodium(1)-Catalyzed Asymmetric Hydrogenation of α-(Acy1amino)acrylic Acids. J. Am. Chem. Soc. 1980, 102, 7932-7934.
- (a) Ohta, T.; Takaya, M.; Kitamura, K.; Nagai, K. Noyori, R. Asymmetric Hydrogenation of Unsaturated Carboxylic Acids Catalyzed by BINAP-Ruthenium (II) Complexes. J. Org. Chem. 1987, 52, 3174-3176. (b) Kitamura, M.; Nagai, K.; Hsiao, Y.; Noyori, R. Stereoselective Synthesis of a Precursor of 1β-Methylcarbapenems. Tetrahedron Lett. 1990, 31, 549-552.
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H..; Fox, B. A.; Trong, I. L.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal Structure of
Rhodopsin: A G Protein-coupled Receptor. Science 2000, 289, 739-745.

- Conway, S.; Drew, J. E.; Mowat, E. S.; Barrett, P.; Delagrange, P.; Morgan, P. J. Chimeric Melatonin mt₁ and Melatonin-related Receptors. *J. Biol. Chem.* 2000, 275, 20602–20609.
- 82) Annoura, H.; Nakanishi, K.; Toba, T.; Takemoto, N.; Imajo, S.; Miyajima, A.; Tamura-Horikawa, Y.; Tamura, S. Discovery of (2S)-2-(4-Amino-2,3,5-trimethylphenoxy)-3-{4-[4-(4-fluorobenzyl)phenyl]-1-piperazinyl}-2-propanol Dimethanesulfonate (SUN N8075): A Dual Na⁺ and Ca²⁺ Channel Blocker with Antioxidant Activity. J. Med. Chem. 2000, 43, 3372–3376.
- Boi, T.; Kuzuna, S.; Maki, Y. Spinal Anti-Nociceptive Effects of Adenosine Compound in Mice. *Eur. J. Pharmacol.* 1987, 137, 227–231.
- 84) Pulsinelli, W. A.; Brierley, J. B. A New Model of Bilateral Hemispheric Ischemia in the Unanesthetized Rat. Stroke 1979, 10, 267-272.
- 85) Pellegrino, L. J.; Cushman, A. J. In A Stereotaxic Atlas of the Rat Brain; Elliott, R. M.; Lindzey, G.; MacCorquodale, K., Eds.; Meredith Publishing Company: New York, 1967.
- 86) Wong, S. C.; Sasso, S.; Jones, H.; Kaminski, J. J. Stereochemical Considerations and the Antiinflammatory Activity of 6-Amino-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ols and Related Derivatives. J. Med. Chem. 1984, 27, 20–27.
- Chatterjee, A.; Banerjee, S. Synthesis of 4-Methyl-5-methoxyindan-1-one. *Tetrahedron* 1970, 26, 2599–2608.
- Bellamy, F. D.; Chazan, J. B.; Ou, K. Synthesis of Derivatives Structurally Related to Glaziovine. *Tetrahedron* 1983, 39, 2803–2806.
- 89) Lednicer, D.; Babcock, J. C.; Marlatt, P. E.; Lyster, S. C.; Duncan, G. W. Mammalian Antifertility Agents. I. Derivatives of 2,3-Diphenylindenes. J. Med. Chem. 1965, 8, 52–57.
- 90) Ganellin, C. R.; Loynes, J. M.; Ridley, H. F.; Spickett, R. G. W. Compounds Affecting the Central Nervous System. IV. Substituted 2-Benzyl-3-dialkylaminoalkylindenes and Related Compounds. J. Med. Chem. 1967, 10, 826–833.
- 91) Cheng, Y. C.; Prusoff, W. H. Relationship between the Inhibition Constant (K_i) and the Concentration of Inhibitor which Causes 50% Inhibition (IC₅₀) of an Enzymatic Reaction. *Biochem. Pharmacol.* 1973, 22, 3099–3108.
- 92) Snider, R. S.; Niemer, W. T. A Stereotaxic Atlas of the Cat Brain. University of Chicago Press: 1961.

発表論 文一覧

- Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto, T.; Sakamoto, J.; Doi, T.; Nagai, Y.; Aono, T. 5-Aminocoumarans: Dual Inhibitors of Lipid Peroxidation and Dopamine Release with Protective Effects against Central Nervous System Trauma and Ischemia. J. Med. Chem. 1997, 40, 559– 573 (Chapter 2, 3).
- 2) Fukatsu, K.; Fujii, N.; Ohkawa, S. Synthesis of TAK-218 using (*R*)-2-Methylglycidyl Tosylate as a Chiral Building Block. *Tetrahedron: Asymmetry* **1999**, *10*, 1521–1526 (Chapter 2).
- Fukatsu, K.; Uchikawa, O.; Kawada, M.; Yamano, T.; Yamashita, M.; Kato, K.; Hirai, K.; Hinuma, S.; Miyamoto, M.; Ohkawa, S. Synthesis of a Novel Series of Benzocycloalkene Derivatives as Melatonin Receptor Agonists. J. Med. Chem. 2002, 45, 4212–4221 (Chapter 4, 5).
- Uchikawa, O.; Fukatsu, K.; Tokunoh, R.; Kawada, M.; Matsumoto, K.; Imai, Y.; Hinuma, S.; Kato, K.; Nishikawa, H.; Hirai, K.; Miyamoto, M.; Ohkawa, S. Synthesis of a Novel Series of Tricyclic Indan Derivatives as Melatonin Receptor Agonists. J. Med. Chem. 2002, 45, 4222– 4239 (Chapter 4, 5).