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General Introduction

      Diabetes mellitus is currently a complicated disease. There are 132 million patients with

diabetes mellitus in the world: especially in Japan, there are more than seven million diabetic

patients. This disease exhibits persistent elevations of glucose levels in serum or blood. The

elevation of glucose levels induces a bewildering list of changes in vascular or neuronal cells.

The major diabetic complications make diabetes more convoluted. There are three major diabetic

complications, i.e., diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Although

many studies have been carried out on diabetic complications, the detailed mechanisms and

etiology underlying diabetic complications, especially diabetic neuropathies, are unclear at this

time.

      Diabetic neuropathy is the most convoluted complication. Diabetic gastropathy, ulcers,

diarrhea, and bladder dysfunction are the major peripheral neuropathies. Peripheral neuropathies

have been the primary neuroscience focus of diabetes research. In contrast to the periphery, the

brain is not usually thought to be a target of chronic diabetic complications. However, the impact

of diabetes mellitus on the central nervous system has gained attention recently (Mooradian,

1988; Ryan, 1988). Chronic diabetes mellitus afflicts the central nervous system in several ways.

Diabetes increases the risk of stroke and the extent of stroke-related damage, over-medication

with insulin or oral agents can permanently damage the brain, and diabetes may increase the

prevalence of seizure disorders. Diabetes changes brain transport, blood fiow and metabolism,

and these changes may produce a chronic encephalopathy (see McCalL 1992 for a review).

Furthermore, it is well known that diabetes or hyperglycemia influences the sensitivity of

laboratory animals to various pharmacological agents. An increased sensitivity of hyperglycemic

or diabetic animals to barbiturates (Lamson et al., 1951; Strother et al., 1971; Ackerman and

Leibman, 1975; Ackerman 1976; Strother, 1979) and a decreased sensitivity to D-amphetamine

(Fernando and Cuzon 1974; Marshall et al., 1976, 1978; Marshall, 1978a,b), p-

chloroamphetamine (MacKenzie and Trulson, 1978), and carbon tetrachloride (Hanazono et al.,

1975a, 1975b) have been demonstrated. Recently, we have reported that the pharmacological

sensitivity to ethanol in diabetic mice is less than that in non-diabetic mice (Ohsawa and Kamei,

1997). Although many investigators have shown the differential sensitivity to various centrally

acting drugs in diabetic mice, the detailed mechanisms underling this differential sensitivity to

these drugs have not been clearly defined.

      Simon and Dewey (1981) reported that mice and rats with streptozotocin-induced
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diabetes and spontaneously diabetic mice are significantly less sensitive than non--diabetic mice

to the antinociceptive effect of morphine. Furthermore, Kamei et al. (1992a) also demonstrated

that the antinociceptive effect of intracerebroventricularly administered morphine and [D-Ala2,

N-MePhe`, Gly-o15]enkephalin (DA]N4GO) is smaller in diabetic mice than in non-diabetic mice.

On the other hand, there were no significant differences between the antinociceptive potencies of

these pt-opioid receptor agonists between diabetic and non-diabetic mice when they were

administered intrathecally (Kamei et al., 1994a). These results indicated that the reduction in the

antinociceptive potency of p-opioid receptor agonists in diabetic mice is due to the dysfunction of

supraspinal p-opioid receptors. However, there is Iittle information availabie regarding the

mechanism responsible for these changes.

      Several studies have indicated that the binding and metabolism of neurotransmitters

within the brain, especially monoamines, are abnormal in diabetes mellitus. Lozovsky et al,

(1981) reported that the number of dopamine receptors, measured as 3H-spiperone binding, is

increased by 30-500/o in alloxan- or streptozotocin-induced diabetic rats. Kamei et al. (1994d)

indicated that the dopamine turnover ratio in the limbic forebrain is increased in diabetic mice

compared to non-diabetic mice. Thus, it has been suggested that diabetic mice have increased

limbic forebrain dopaminergic neurotransmission (Kamei et al., 1994d). Regional noradrenergic

neurotransmission is also altered in diabetes. Trulson and Himmel (1983) showed that the

forebrain noradrenaline (NA) content increases in diabetes. 3-Methoxy-4-hydroxyphenylglycol

(MHPG), a major metabolite of NA, decreases in diabetes suggesting that diabetes decreases

forebrain noradrenergic neurotransmission.

      Opioids, the prototype of which is morphine, are the most potent available analgesic

compounds. Opiates act by mimicking endogenous opioid peptides and specifically activate

membrane receptors in the nervous system. The receptors, named opioid receptors, were first

discovered in 1973 with the demonstration of stereospecific and saturable binding ofradiolabeled

opiates to brain membrane preparations (Pert and Snyder, 1973; Simon et al., 1973; Terenius,

1973). Martin and his colleagues (Gilbert and Martin, 1976; Martin et al., 1976) performed

pharmacological studies in chronic spinal dogs and found that morphine and several of its

analogs differed in their pharmacological profiles. The study ofthe pharmacological activity ofa

wide variety of alkaloid compounds and the discovery ofenkephalins (Hughes et al., 1975) led to

the classification of opioid binding sites into three classes referred to as p, 6 and K opioid

receptors (Goldstein and Naidu, 1989). Autoradiography showed a distinct distribution for each
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receptor class in the brain (Mansour et al., 1988) and evidence has accumulated for a differential

role ofthe three classes ofreceptors in pain modulation (Dickenson, 1991). Specific p-, 6- and K-

opioid receptor agonists have also been associated with variable acute liability and distinct mood-

altering, autonomic and neuroendocrine effects which have been shown to be mediated by each

receptor type (Millan, 1990). Recently, Evans et al. (1992) and Kieffer et al. (1992)

independently reported cloning of 6-opioid receptor from neuroblastoma x glioma NG-108-15

hybrid cells using an heterologous expression cloning strategy and ligand-binding activity to

monitor the expression of receptors. Following the identification`of the 6-opioid receptor, p-

(Chen et al., 1993) and K-opioid receptor (Yasuda et al., 1993) cDNA were also cloned.

Molecular analysis of these three opioid receptors indicated that they conform to the structural

motif of the guanine-nucleotide-binding regulatory protein (G-protein) coupled receptor

superfamily, including the conserved seven hydrophobic domains.

     Morphine, the prototypic pt-opioid receptor agonist, produces analgesia, drowsiness,

changes in mood, respiratory depression, decreased gastrointestinal motility, nausea, vomiting,

and alternations of the endocrine and autonomic nervous systems. Morphine is used primarily for

the treatment ofpain. Some ofthe central nervous system mechanisms that reduce the perception

ofpain also produce a state ofwell being or euphoria. Morphine also is taken outside ofmedical

channels for the purpose of obtaining these effects on mood. This potential for abuse has

generated much research on separating the mechanism of analgesia from that of euphoria in the

hope of eventually developing a potent analgesic that dose not produce euphoria. Although this

research has led to advances in understanding the physiology of pain, the standard medications

for severe pain remain the derivatives of the opium poppy and synthetic drugs that activate the

same receptors. Furthermore, patients who have received opioids develop tolerance routinely, and

ifthe medication is stopped abruptly, they will show the signs ofan opioid withdrawal syndrome,

the evidence for physical dependence. Although morphine is one of the most potent analgesics,

the use of morphine and related drugs is limited clinically by these problems.

      The physiological mechanisms implicated in the development of opioid dependence and

the expression of withdrawal symptoms consist of adaptive changes that include the processes of

homologous regulation, affecting the endogenous opioid system, and heterologous regulation that

affects other neurotransmitter systems. Numerous non-opioid neurotransmitters have been

proposed to participate in this heterologous regulation. Many of the pharmacological and

biochemical studies have been focused on the central noradrenergic system, which seems to have

an important role in the expression of the somatic signs of opioid withdrawal. This involvement
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is supported by several lines of evidence based on the biochemical changes reported in

noradrenergic transmission during opiate dependence and withdrawal, and on the

pharmacological responses induced after opiate withdrawal by the administration of adrenergic

compounds. Much of the evidence for the noradrenergic involvement in opioid dependence has

been derived from studies of the locus coeruleus (LC). The LC is the largest cluster of

noradrenergic neurons in the brain (Dahlstrom and Fuxe, 1964; Foote et al., 1983). The firing rate

of noradrenergic neurons in the LC increases durjng naloxone-precipitated withdrawal from

morphine dependence (Aghajanian, 1978). Treatment with DSP-4, which destroys the NA-

containing neurons, prior to induction ofdependence attenuates any withdrawal signs precipitated

by systemic administration of naloxone in morphine-dependent mice (Funada et al., 1993).

Furthermore, an enhancement in the brain content of MHPG, a principal metabolite ofNA, was

found in several brain regions innervated by the LC during morphine abstinence withdrawal

behavior (Sesak et al., 1983). This increase in the levels ofthe NA metabolite was also confirmed

in the frontal cortex of mice (Funada et al., 1993). The physiological activation of LC neurons

follows a time course that closely parallels the expression of morphine abstinence withdrawal

behaviors (Rasmussen and Aghajanian, 1989). The recent development ofin vivo microdialysis

techniques in freely moving rats allows the measurement of the extracellular concentrations of

neurotransmitters in discrete areas of the central nervous system, which is a direct reflection of

the balance between synaptic release and uptakelclearance of these transmitters. Using this

technique, it has been reported that the extraneuronal NA concentration was enhanced

immediately after the expression of naloxone-precipitated morphine withdrawal symptoms,

reaching the maximal levels within 30 min after naloxone and remaining elevated for over 90

min. The symptomatology ofwithdrawal paralleled these changes in the cortical output ofNA

(Rossetti et al., 1993), which is compatible with the previous idea that some of the behavioral

signs of abstinence may be mediated by an increased activity of the noradrenergic system

(Redmond, 1987). Thus, many investigators have suggested that the central noradrenergic system

plays a significant role in morphine withdrawal.

      Another problem with the use of morphine and other opioid drugs is their potent

reinforcing propenies. Opioids and other drugs of abuse exert marked effects on mood and

motivation (Belluzzi and Stein, 1977; Stein and Belluzzi, 1978; Dum and Herz, 1987). Animals

wM readily self-administer drugs either intravenously or orally, and drugs that are self-

administered by animals correspond well with those of high abuse potential in humans. Self-
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administration and intracranial self--stimulation --- obviously associated with feelings ofpleasure -

-
 have been widely used to determine the motivational effects of drugs of abuse (Wise and

Bozarth, 1982; Bozarth, 1987), These operant techniques measure the primary reinforcing

processes using specific behavioral tasks such as lever-pressing. In the behavioral experiments,

place conditioning, a technique that measures the secondary reinforcing effects of drugs, assessed

the drug-induced motivational effects. In this procedure, the association that develops between

the presentation of a drug and a previously neutral stimulus (e.g., differently colored

compartments of a shuttle box) is evaluated. The results obtained with this paradigm for

rewarding drugs are largely identical to those obtained with the self-administration technique

(Spyraki, 1988; Carr et al., 1989). Besides the evaluation of rewarding propenies, the place

conditioning procedure also allows the detection of aversive (negatively reinforcing) propenies

ofdrugs, which is ofparticular importance when investigating the effects ofopioids.

      Two major dopamine systems originate in the ventral midbrain: the nigrostriatal

dopamine system and the mesolimbic dopamine system. The mesolimbic dopamine system has

been implicated in drug reinforcement. The cell bodies of this system originate in the ventral

tegmental area (VTA), originally described as the AIO group of catecholamine-containing

neurons (Dahlstrom and Fuxe, 1964), and project to the forebrain, largely the nucleus accumbens,

olfactory tubercle, frontal cortex, amygdala, and septal area (Koob, 1992). Opioids can increase

dopamine release in the nucleus accumbens as measured by in vivo microdialysis in awake,

freely moving animals (Di Chiara and Imperato, 1988). Microinjection ofopioids into the VTA, a

region containing the cell bodies oforigin ofthe mesolimbic dopamine system, lowers the reward

thresholds for brain stimulation and produces robust place preferences (Di Chiara and North,

1992). Furthermore, it has been shown that the place preferences produced by opioids appear to

have a major dopaminergic component (Spyraki et al., 1983; Shippenberg et al., 1993). Other

evidence supporting the role of dopamine in opioid reinforcement comes from lesion studies.

Dopaminergic lesions of the nucleus accumbens have been shown to antagonize morphine

(Kelsey et al., 1989) and heroin (Spyraki et al., 1983) induced place preference. Similarly,

destruction of the ascending dopaminergic pathways ipsilateral to the injection site of DAMGO

blocked DAMGO-induced place conditioning when dopamine levels were reduced by more than

900/o (Phi11ips et al., 1983). Thus, mesolimbic dopaminergic neurons may be involved in the

reinforcing effect ofopioids.

      p-, 6- And K-opioid receptors inhibit neurotransmission, and this is generally accepted as
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the mechanism underlying analgesia. The inhibition of neurotransmission is caused by

coordinated changes at the cellular level (Smart et al., 1994). The opioid receptors, as well as

many other hormone, lymphokine, neurotransmitter, and neuromodulator receptors, signal to

specific intracellular effectors through G-proteins (Gillman, 1987; Birnbaumer, 1990). The

family of G-protein coupled receptors share a number of structural features, including seven

conserved hydrophobic domains that form the membrane spanning regions. Through G-protein

coupling to specific second messenger systems, all three classes ofopioid receptors elicit cellular

responses such as inhibition of adenylyl cyclase, increased potassium conductance, and

inactivation of calcium channels (Simonds et al., 1985; Childers, 1991). These intracellular

changes may underlie the antinociceptive action ofopioids.

      Repeated or sustained exposure to opioids leads to a reduction in their potencies for

evoking pharmacological effects, especially those causing analgesia. This phenomenon is termed

tolerance. Chronic exposure to morphine stimulates cytosolic protein kinase C (PKC) activity in

rat brain (Narita et al., 1994a), as well as increasing membrane-bound PKC activity in rat brain

homogenates (Narita et al., 1994b) and dorsal root ganglion (DRG) neurons from laminae I and II

ofthe spinal cord (Mao et al., 1995; Mayer et al., 1995). This increase in PKC activity parallels

the development of tolerance to opioid-induced antinociception in vivo (Narita et al., 1994a,

1994b; Mao et al., 1995; Mayer et al., 1995). Furthermore, inhibition of PKC with H-7,

calphostin C or GMI ganglioside prevents the development of tolerance, while inhibition of

protein kinase A (PKA) with KT5720 dose not (Narita et al., 1994c; Narita et al., 1995; Mao et

al., 1994). Thus, chronic opioid-induced activation ofPKC may play a role in the development of

tolerance by causing coordinated changes in the cellular mechanisms that mediate

ant!noclceptlon.

      Chronic opioid exposure induced several intracellular changes. These intracellular

changes may be involved in the development and expression of opioid physical dependen'ce.

Upon chronic opioid treatment, LC neurons developed tolerance to the acute inhibitory actions of

opioids, as neuronal firing rates recovered toward pretreatment levels (Aghajanian, 1978;

Andrade et al., 1983; Christie et al., 1987). The neurons also become dependent on opioids after

chronic exposure, as indicated by the fact that abrupt cessation of opiate treatment, for example,

by administration of an opioid receptor antagonist, leads to an elevation in the firing rates in the

LC several-fold above the pretreatment level (Aghajanian, 1978; Rasmussen et al., 1990). The

rebound of adenylyl cyclase activity during withdrawal was first demonstrated by Sharma et al.

(1975), and has long been considered as a candidate for a role in generating opioid withdrawal.
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Type VIII adenylyl cyclase mRNA in the LC was selectively increased after ohronic morphine

treatment in the LC, and the time course ofthese changes in adenylyl cyclase mRNA was related

to the incidence ofjumping behavior during the withdrawal syndrome (Matsuoka et al., 1994).

Another argument in favor ofthe participation ofthis intracellular signal transduction pathway is

the strong attenuation in the expression of the somatic symptoms of morphine withdrawal that

results from the inhibition ofprotein kinase activities in the LC (Maldonado et al., 1995). Protein

kinases belonging to the family ofthe serinelthreonine kinases seem to be selectively implicated

since this alleviator response was induced by the local administration of the serine/threonine

kinase inhibitor H-7, but not after the microinjection of the tyrosine kinase inhibitor KB23

(Maldonado et al., 1995). The results obtained in the LC were correlated with the behavioral

manifestations of the somatic symptoms of abstinence, and suggest that many intracellular

changes throughout the brain produced by opioid withdrawal may be involved in the activation of

noradrenergic neuron in the LC,

      A role for Ca2' in the action of opioids has long been' advocated based initially on

pharmacological evidence. Previous findings may provide an explanation for some of these

effects and implicate Ca2' more definitively in the action of opioids (Hano et al., 1967). Two

acute effects of opioids commonly observed are a reduction in neurotransmitter release and

inhibition ofneuronal electrical activity. The electrophysiological evidence indicates that opioids

decrease Ca2' influx by depression of voltage-sensitive Ca2' channels (Mudge et al., 1979) and

membrane hyperpolarization of cell bodies by increased K' conductance (North and Williams,

1983). An another electrical finding that may be very important is that opioids also prolong Ca2'-

dependent after hyperpolarization. These electrical findings may be related to Ca2' disposition

and may be explained by an opioid-induced decrease in intracellular Ca2' binding. Early

pharmacological evidence pointed the way and provided strong circumstantial evidence to

implicate Ca2' in the action ofopioids. For instance, manipulating cellular calcium can alter many

ofthe observed effects ofopioids. Invariably, maneuvers that tend to elevate neuronal Ca2', either

with Ca2' itselfor with Ca2' ionophores, reduce opioid actions. On the other hand, procedures that

lower cytosolic Ca2', such as reductions in the extracellular Ca2' concentration, removal of

extracellular Ca2' with chelating agents, or blocking of Ca2' entry with La3', all enhance the

action ofopioids (Chapman and Way, 1980; Schmidt and Way, 1980).

      The increase in Ca2' accumulation requires the concomitant presence of the opioids and

this may explain the development of physical dependence. When opioids are discontinued or
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treatment with an antagonist removes the agonist, the high synaptosomal Ca2' content in the

absence of the agonist produces greatly increased neurotransmitter release. This neuronai

hyperexcitability then gives rise to withdrawal signs and symptoms. The abstinence syndrome

can be attenuated by reducing intracellular Ca2'. Furthermore, La3' administration reduces abrupt

or naloxone-induced withdrawal jumping in mice (Chapman and Way, 1980). The mechanisms

underlying the enhancement of intracellular calcium by chronic opioid exposure are

physiological counter-adaptation. Opioid could cause a transient displacement of Ca2' from its

intracellular binding sites to effect increased K' conductance, membrane hyperpolarization,

decreased neuronal firing, and neurotransmitter release. The Ca2' released by opioids might act to

reduce further Ca2' entry, or the Ca2' channel itselfmay be blocked by opioids, resulting in a fall

in neuronal Ca2'. However, this lowering sets in to motion other homeostatic processes within the

cell, which become increasingly manifest as opioid administration continues. In particular, the

counter-adaptive effect occurs at the intracellular binding sites. The displacement ofCa2' from its

binding sites in the presence of the opioids becomes more difficult so that a higher dose of the

opioid is required before an acute response can be elicited (tolerance). However, the counter-

adaptive effect of retained Ca2' within the cell also increases, but requires the presence of the

opioid (dependence). Removal of the opioid by discontinuing its administration or by

administering an antagonist results in a rise in intracellular Ca2', higher excitability, and

increased neurotransmitter release (abstinence syndrome; Chapman and Way, 1980).

      Excessive glucose can also be transported intracellularly, mainly by the glucose

transporter GLUT-1, and metabolized to change the redox potential, increase sorbitol production

via aldose reductase, or alter signal transduction pathways, such as the activation of

diacylglycerol (DAG) and PKC Ievels (Kaiser et al., 1993; Greene et al., 1987; Williamson et al.,

1993; King et al., 1997; De Rubertis and Craben, 1994; Sharma and Ziyadeh, 1995; Baynes,

1991). It is possible and, in fact, likely that the common pathway by which all of the intra- and

extracellular changes induced by hyperglycemia are mediating their adverse effects is the

alteration of various signal transduction pathways. Increases in total DAG content have been

demonstrated in a variety oftissues associated with diabetic vascular complications, including the

retina (Shiba et al., 1993), aorta, heart (Inoguchi et al., 1992), and renal glomeruli (Craven et al.,

1990; Ishii et al., 1996) from animal models of diabetes and patients. Furthermore, in the sciatic

nerve ofdiabetic animals, the activity ofPKC is increased. This activation ofPKC causes higher

phosphorylation ofNa'-K'-ATPase, which results in a decrease in its activity (Hermenegildo et

al., 1993). In an electrophysiological study, it has been shown that the injection ofPKC inhibitors,
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such as staurosporine and PKC (19-31), reduced the hyperexcitability of C-fibers in

streptozotocin-induced diabetic rats (Ahlgren and Levine, 1994). Thus, it seems likely that

several diabetic neuropathies may be caused by the activation of intracellular messengers,

especially PKC.

      Numerous investigators have indicated that chronic diabetes mellitus is associated with

pronounced changes in cellular calcium homeostasis, which in turn lead to substantial

complications in most system functions. In vascular smooth muscle cells, a definite increase of

Ca2' influx through voltage-operated sarcolemma Ca2' channels and decrease in the productivity

ofthe Ca-ATPase pump in diabetic animal lead to enhanced vascular smooth muscle contractions

(Sowers, 1990). In peripheral nerves of diabetic rats, mitochondrial and axoplasmic calcium

levels were indeed found to be increased with electron-probe X-ray microanalysis (Lowery et al.,

1990). Moreover, voltage-dependent calcium currents through L-, and N-type channels are

enhanced in DRG neurons in BBIWor rats in vivo (Hall et al., 1995). The impairment of the

activity of the Na'ICa2' exchanger (Greene et al., 1984) and Ca2'-ATPase (Janicki et al., 1994)

causes a net calcium overload. Furthermore, in sensory neurons, depolarization-induced Ca2'

transients in small DRG neurons became substantially prolonged during streptozotoein-induced

and spontaneously occurring diabetes (Kostyuk et al., 1995). The increased residual Ca2' in

synaptic terminals is very substantial for the potentiation ofsynaptic transmission (Zucker, 1989).

As altered calcium homeostasis that results in elevation of [Ca2'], may contribute to neuronal cell

injury and death (Nichotera et al., 1992), enhanced calcium levels may contribute to the

impairment ofneuronal function in diabetes mellitus.
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Aims and Scope

The purpose of this research is to investigate the mechanisms underlying dysfunction of the

central nervous system in diabetic mice and painful diabetic neuropathies. In my experimental

approach, behavioral and neurochemical analyses are employed.

The specific aims ofthe proposed research

In Chapter 1

      First, I shall attempt to determine the dysfunction of p-opioid receptors in diabetic mice.

The p-opioid receptor agonist inductions of several pharmacological actions, such as the Straub

tail reaction and antinociception, in diabetic mice were examined. In addition, to define the role

of the protein kinase (PK) C in the dysfunction of p-opioid receptors in diabetic mice, I have

examined the influence of central administration of PKC and PKA inhibitors on the p-opioid

receptor agonist-induced pharmacological actions in diabetic mice. Furthermore, to distinguish

between the differential modulation of p- and 6-opioid receptor agonist-induced antinociception

in diabetic mice and the changes of intracellular calcium levels, the influence of central

administration of intracellular calcium modulators on the p- and 6-opioid receptor agonist-

induced antinociception in diabetic mice were examined.

In Chapter 2

      In order to determine the effect of the dysfunction of p-opioid receptors in diabetic mice

on the expression of morphine withdrawal, I have investigated the naloxone-induced withdrawal

signs in morphine-dependent diabetic mice. Furthermore, to evaluate the role of the protein

kinase (PK) C in the changes of morphine withdrawal in diabetic mice, I have examined the

influence of central administration ofPKC and PKA inhibitors on the expression of naloxone-

induced withdrawal jumping and naloxone-induced enhancement of noradrenaline turnover in

morphine-dependent diabetic mice. Moreover, to demonstrate the role ofthe intracellular calcium

in the central dysfunction in diabetic mice, the influence of supraspinal and spinal injections of

intracellular calcium modulators on the expression of morphine withdrawal and naloxone-

induced enhancement of noradrenaline turnover in morphine-dependent diabetic mice were also

investigated.
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In Chapter3

      In order to evaluate the

have determined the morphine-,

diabetic mice.

rewarding effect of several addictive drugs in diabetic mice,

 methamphetamine- and cocaine-induced place preferences

I

in
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Chapter 1

Modification of p-opioid receptor-mediated pharmacological
action by diabetes in mice: possible involvement ofprotein

           kinase C and intracellular calcium
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Introduction

       It has been reported that the antinociceptive potency of morphine is decreased in

several rodent models of hyperglycemia, including a spontaneously diabetic strain mice and

streptozotocin-induced diabetes, an animal model oftype I diabetes (Simon and Dewey, 198l).

Kamei et al. (1994a) previously reported that the antinociceptive effects ofi.c.v., but not i.t.,

administration of p-opioid receptor agonists, such as morphine and [D•-Ala2, NMePhe`, Gly-

ol5]enkephalin (DAMGO), in non-diabetic mice were significantly less than those in diabetic

mice. In contrast with these p-opioid receptor agonists, Kamei et al. (1994b, 1995) recently

reported that the antinociceptive effect of i.c.v. administration of 6--opioid receptor agonists,

such as [D-Pen2, D-Pen5]enkephalin (DPDPE) and (Å})-TAN67 (Suzuki et al, 1996), in

diabetic mice were markedly greater than those in non-diabetic mice. Therefore, they

suggested that diabetic mice are selectively hypo-responsive to supraspinal p-opioid receptors

agonists and hyper-responsive to supraspinal 6-opioid receptors agonists (Kamei et al., 1994a,

1994b). However, the detailed mechanisms that are responsible for this hypo-responsiveness

to supraspinal p-receptor-mediated antinociception and hyper-responsiveness to supraspinal

6-opioid-mediated antinociception in diabetic mice are unclear.

       Various studies have demonstrated the existence oftwo pt-opioid receptor subtypes,

which have been referred to as p,-opioid and p,-opioid receptors (Heyman et al., 1988; Kamei

et al., 1993b, 1993c; Pasternak et al., 1980; Pasternak and Wood, 1986; Paul et al., 1989;

Wolozin and Pasternak, 1981). In vitro studies have indicated that naloxonazine selectively

blocks a high-affrinity morphine binding, which has been ascribed' to pti receptors (Hahn et al.,

1982). Other studies using naioxonazine have implicated pi-opioid receptors in several p-

opioid receptor-mediated actions, such as supraspinal antinociception, feeding and prolactin

release, but not in others, such as spinal antinociception, antitussive action and physical

dependence (Heyman et al., 1988; Kamei et al., l993b, 1993c; Pasternak et al., 1980;

Pasternak and Wood, 1986; Paul et al., 1989; Wolozin and Pasternak, 1981).

       Morphine contracts the sacrococcygenus muscle in mice, which results in erection of

the tail (Straub tail reaction) (Bilby et al., 1960). Previous studies have suggested that the

morphine-induced Straub tail reaction is evoked through the activation of p-opioid receptors

(Kameyama and Ukai, 1979; Narita et al., 1993). However, there is little information available

regarding the involvement of pt-opioid receptor subtypes in the morphine-induced Straub tail

reaction. Recently, Murray and Cowan (1990) suggested that 6-opioid receptors are not
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involved in the opioid agonist-induced Straub tail reaction. Thus, the morphine-induced

Straub tail reaction is usefu1 model which can serve to examine the,effect of diabetes on p-

opioid receptor functions, without the infiuence of 6-opioid receptor functions. Thus, in

Experiment 1-1, I investigated the infiuence of naloxonazine, a selective p,-opioid receptor

antagenist, on morphine-induced Straub tail reaction to determine the involvement of the pt-

opioid receptor subtypes in the morphine-induced Straub tail reaction. In addition, I

investigated the influence of diabetes on the morphine-induced Straub tail reaction to clarify

the hypothesis that diabetic mice are selectively hypo-responsive to pi-opioid receptor-

mediated pharmacological action, but not to that which is mediated by p2-opioid receptors.

       Three opioid receptors, p-, 6-, and K-opioid receptors, have recently been cloned

(Evans et al., 1992; Kieffer et al., 1992; Chen et al., 1993; Yasuda et al., 1993; Liang et al.,

1995). These three opioid receptors contain several potential phosphorylation sites in the first

and third loops and the C-terminus of intracellular domains (Miotto et al., 1995). It has been

suggested that phosphorylation of these three opioid receptors is involved in desensitization.

There is accumulating evidence that the activation of protein kinase C (PKC) regulates

several cellular functions through the phosphorylation ofproteins, including some receptors,

whose function is then down-regulated or up-regulated (Moran and Dascal, 1989). Activation

of PKC by treatment with phorbol ester potentiates the desensitization of the p-opioid

receptor•dinduced K' current (Chen and Yu, 1997). Furthermore, we recently reported that

activation of PKC by phorbol 12,13-dibutyrate leads to the desensitization of p-opioid

receptor-mediated antinociception (Narita et al., 1997). These results suggest that PKC may

be involved in the desensitization of pt-opioid receptor-mediated pharmacological action in

mice.

       Many investigators have reported that hyperglycemia or elevated glucose levels can

increase diacylglycerol (DAG) levels and activate PKC in vascular tissues, cardiac tissues, or

cultured cells (Craven and DeRubertis 1989; King et al. 1990; Tanaka et al. 1991; Inoguchi et

al. 1992). Activation of the DAG-PKC cellular signal pathway is linked to vasculature

dysfunction in diabetes (Craven and DeRubertis 1989; Wolf et al. 1990; Shiba et al. 1993).

Furthermore, Ahlgen and Levine (1994) reported that both the mechanical behavioral

hyperalgesia and C-fiber hyperexcitability in response to mechanical stimuli seen in

streptozotocin-induced diabetic rats are reduced by agents that inhibit PKC. This result

suggests that increased PKC activity might alter the excitabiiity of primary afferent

nocieeptors. It is possible that PKC may be involved in the desensitization of p-opioid
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receptor-mediated pharmacological actions in the mice. Thus, in Experiment 1-2, I examined

the effects ofa PKC activator and inhibitor on the i.c.v. morphine-induced Straub tai1 reaction

in diabetic and non-diabetic mice. Furthermore, in Experiment 1-3, the role of PKC in the

attenuation ofthe antinociception induced by DAMoo in diabetic mice was examined.

       There is considerable evidence ofa close relationship between opioid antinociception

and Ca2' levels within the central nervous system. Agents that increase cytosolic Ca2' in

neurons and synaptosomes block opioid antinociception when injected i.c.v. Hano et al.

(1964) reported that intracisternal administration of Ca2' antagonizes the antinociceptive

effect of morphine, a prototype p-opioid receptor agonist. The ionophores X-537A and

A23187, which facilitate Ca2' uptake by ceils, also block morphine-induced antinociception.

(Hanis et al., 1975; Vocci et al., 1980). Since ionophores act mainly by increasing

intracellular Ca2', it has been postulated that Ca2' alters intracellular events to antagonize the

antinociceptive effects of morphine (Chapman and Way, 1980). Conversely, Ca2' chelators

(i.e., ethylene glycol bis(B-aminoethyl ether)N,N'-tetraacetic acid (EGTA)) or Ca2' channel

antagonists of the verapamil, diltiazem and dihydropyridine types potentiate opioid

antinociception (Ben-Sreti et al., 1983; Hoffmeister and Tettenborn, 1986).

       Considerable evidences suggest that calcium signaling is abnormal in cardiac

myocytes (Nobe et al., 1990), vascular smooth muscle (Kamata et al., 1988) and other tissues

(Levy et al., 1994) from diabetic animals. A recent study has shown that verapamil has a

beneficial effect on the cardiac function of diabetic rats without affecting glucose metabolism

or insulin secretion (Afzal et al., 1988). It has been suggested that chronic excessive

intracellular calcium overload might induce cardiac dysfunction in chronic diabetes (Heyliger

et al., 1987; Nishio et al., 1990). Moreover, it has been suggested that the diabetic state may

change [Ca2']i in neuron and various tissues (Lowery et al., 1990; Hall et al., 1995; Kostyuk

et al., 1995). It is possible that increased cytosolic calcium may play an important role in the

modification of pa and 5-opioid receptor-mediated antinociception by diabetes. Thus, to test

this hypothesis, in Experiment 1-4, I examined the effect of intracellular calcium modulators

on the change in p- and 6-opioid receptor agonist-induced antinociception in diabetic and

non-diabetic mice.
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Experiment 1-1: Effects of diabetes on the morphine-induced Straub tail reaction in

                                 mice.

Materials and Methods

Animals

       Male ICR mice (Tokyo Animal Laboratories Inc., Tokyo, Japan), weighing about 20

g at the beginning ofthe experiments, were used. They had free access to food and water in an

animal room which was maintained at 22 Å} 2 OC with a 12-h light-dark cycle. Animals were

rendered diabetic by an injection of streptozotocin (200 mglkg, i.v.) prepared in O.1 N citrate

buffer at pH 4.5. Age-matched non-diabetic mice were injected with vehicle alone. The

experiments were conducted two weeks after injection of streptozotocin or vehicle. Mice with

serum glucose levels above 400 mgldl were considered diabetic.

Procedure

       The Straub tail reaction was graded using a minor modification of the numerical

scores ofKameyama et al. (1978) as follows; O = OO, O.5 = 1-300, 1 = 31-450, 1.5 = 46-600, 2.0

= 61-900, 2.5 = more than 900. The angle was measured above the horizontal plane of the

table. Morphine was injected subcutaneously (s.c.). The Straub tail reaction was observed 20

min after s.c. administration of morphine. Motor coordination in mice was measured using

rotarod performance apparatus (3 cm in diameter, 3.25 rpm; Natsume Co., Tokyo, Japan).

Drugs

       Morphine hydrochloride was obtained from Sankyo Co. (Tokyo, Japan). 3-

Funaltrexamine and naloxonazine were synthesized by Dr. Nagase (Toray Industries, Inc.,

Kamakura, Japan). B-Funaltrexamine (20 mglkg, s,c.) and naloxonazine (35 mglkg, s.c.) were

given to mice 24 h prior to morphine treatment. The dose and schedule for B-funaltrexamine

and naloxonazine treatment in this study were determined according to previous report

(Kamei et al., 1992b, 1993a). Drugs were dissolved in O.9 O/o saline solution.

Statistical analysis

       Data are shown as the mean Å} S.E. One-way ANOVA followed by Dunnett's multiple

comparison test was used for the statistical evaluation.
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Results

       The pre-drug Straub tail reaction score is zero in both non-diabetic and diabetic mice.

As shown in Fig. 1-1, s.c. administration of morphine, at doses of 3 - 10 mglkg, dose-

dependently increased the Straub tail reaction score in both non-diabetic and diabetic mice.

Mice with diabetes showed significantly less sensitivity in the morphine-induced Straub tail

reaction. Indeed, there was a significant difference in the intensity of the Straub tail reaction

induced by 3, 5.6 and 10 mglkg of morphine between non-diabetic mice and diabetic mice

(Fig. 1-1). When the mice were pretreated with naloxonazine, the Straub tail reaction induced

by morphine (1O mglkg, s.c.) in both non-diabetic and diabetic mice was significantly reduced

(Table 1-1). Furthermore, the Straub tail reaction induced by morphine (10 mglkg, s.c.) was

also antagonized by pretreatment with B-funaltrexamine in both non-diabetic and diabetic

mice (Table 1-1).

       On the other hand, there was no significant difference in the duration of rotarod

performance between diabetic (114.7 Å} 25.5 s, n=6) and non-diabetic (110.0 Å} 16.4 s, n=7)

mice.
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Figure 1-1. Dose-response curves for the morphine-induced Straub tai1 reaction in diabetic

(open circle) and diabetic (closed circle) mice. The Straub tai1 reaction was graded using

numerical scores, and was observed 20 min after s.c. administration ofmorphine. "PÅqO.05

vs. non-diabetic mice.
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Table 1

Antagonism ofthe s.c. morphine-induced Straub tail reaction by pt-opioid receptor antagonists

in non-diabetic and diabetic mice.

Treatments Tail reaction scores

Non-diabetic mice Diabetic mice

Morphine

Morphine+B-funaltrexamine

Morphine+naloxonazine

1.90 Å} O. 18

Q90 Å} O. 16**

085 Å} O. 13**

1.30Å}O.15#

O. 75 Å} O. I5*

Q70 Å} O. 13**

The Straub tail reaction was observed 20 min after the s.c. administration of morphine (10

mgfkg). Each group consisted of 1O mice. Mice were treated with B-funaltrexamine (20 mglkg,

s.c.) or naloxonazine (35 mg/kg, s.c.) 24 h before testing.

#PÅqO.05 vs. non-diabetic mice. "PÅqO.05 and ""PÅqO.Ol vs. morphine alone.
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Experiment 1-2: Possible involvement of protein kinase C in the attenuation of the

morphine--induced Straub tail reaction in diabetic mice

Materials and Methods

Animals

      Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-•matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle. Mice with serum glucose levels above 400 mgldl were considered

diabetic.

Measurement of the Straub tail reaction

      The Straub tail reaction was graded using a minor modification of the numerical

scoring system as described in Chapter 1-1. The angle was measured above the horizontal

Intracerebroventricular injection

      Intracerebroventricular (i.c.v.) administration was performed following the method

described by Haley and McCormick (1957) using a 50-pl Hamilton syringe. The injection site

was 1.5 mm from the mid line, O mm from the bregma and 3.0 mm from the surface of the

sku11. Injection volumes for i.c.v. administration were 5 pt1.

Drugs

      The drugs used were streptozotocin (Sigma Chemical Co., St. Louis, MO) and

morphine hydrochloride (Sankyo Co., Tokyo, Japan). Calphostin C and phorbol-12,13-

dibutyrate (PDBu) were purchased from Calbiochem-Novabiochem International (San Diego,

CA), and were injected lh before the i.c.v. injection of morphine. The dose and schedule for

- 20-



calphostin C and PDBu in this study were determined as described previously (Narita et al.

1997).

Data analysis

       The data are expressed as means Å} S.E. The statistical significance of differences

between groups was assessed with an analysis of variance (ANOVA) followed by the

Bonferroni test. The potency ratio for non-diabetic mice and diabetic mice was calculated

using Program 11 ofthe Pharmacological Calculation system of Tallarida and Murray (1987)
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Results

Effects of a protein kinase C activator, phorbol 12,13-dibutyrate (PDBu), on the

morphine--induced Straub tail reaction in diabetic and non-diabetic mice.

       As shown in Fig. 1-2A, i.c.v. administration of morphine, 15 ptg, induced a Straub

tail reaction in both diabetic and non--diabetic mice. Mice with diabetes showed significantly

less sensitivity in the i.c.v. morphine-induced Straub tail reaction. I.c.v. pretreatment with

PDBu (10 and 50 pmol) 60 min prior to an i.c.v. challenge with morphine (15 pg) attenuated

the morphine-induced Straub tail reaction in non-diabetic mice. In diabetic mice, however,

PDBu had no significant effect on the morphine (15 pg)-induced Straub tail reaction (Fig. 1-

2A). As shown in Fig. IB, i.c.v. pretreatment with calphostin C (10 pmol) 60 min prior to an

i.c.v. injection of morphine did not affect the morphine-induced Straub tail reaction in non-

diabetic mice. In diabetic mice, i.c.v. pretreatment with calphostin C, at doses of 3, and 10

pmol, progressively enhanced the morphine-induced Straub tail reaction (Fig 1-2B).

       The i.c.v.-administered morphine-induced Straub tail reaction in diabetic mice was

less than that in non-diabetic mice, as evidenced by a 2.3-fold rightward shift in the dose-

response curve (Fig. 1-3). As shown in Fig. 1-3, i.c.v. pretreatment with a protein kinase C

(PKC) activator, PDBu, at a dose of 50 pmol attenuated the i.c.v. morphine-induced Straub

tail reaction in non-diabetic mice; the dose response curve for the morphine-induced Straub

tail reaction was markedly shifted to right by 2.1-fold. The potency ratio (950/o CL) of the

morphine-induced Straub tail reaction in PDBu--treated non-diabetic mice versus that in

vehicle-treated non-diabetic mice was 2.1 (1.4 - 4.3) (Fig. 1-3). In contrast, the i.c.v.

morphine-induced Straub tail reaction in diabetic mice was not affected by i.c.v. pretreatment

with PDBu (Fig. 1-3). I.c.v. pretreatment with a PKC inhibitor, calphostin C, did not affect the

morphine-induced Straub tail reaction in non-diabetic mice (Fig. 1-3), but enhanced in

diabetic mice. The dose-response curve for the morphine-induced Straub tail reaction in latter

mice was markedly shifted to the left by 2.8--fold. The potency ratio (95 O/o CL) of the

morphine-induced Straub tail reaction in calphostin C-treated diabetic mice versus that in
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vehicle-treated diabetic mice was 2.8 (2.3 - 3.5) (Fig. 1-3). There was no significant

difference in the potency ofthe morphine-induced Straub tail reaction between calphostin C-

treated diabetic mice and naive non-diabetic mice. The potency ratio (95 O/o CL) of the

morphine-induced Straub tai1 reaction in calphostin C-treated diabetic mice versus that in

naive non-diabetic mice was 1.0 (O.98 - 1.07).
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Figure 1-2. Effect ofi.c.v. pretreatment with phorbol 12,13-dibutyrate (PDBu; A) and

calphostin C (B) on the i.c.v. morphine-induced Straub tai1 reaction. PDBu (1O and 50

pmol) or calphostin C (1 or 3 pmol) was injected i.c.v. 60 min before administration of

morphine (15 ml, i.c.v.). The Straub tai1 reactionwas graded using numerical scores, and

was observed 20 min after the i.c.v. administration ofmorphine. Each column represents

the mean with S.E. for 9-15 mice in each group. *PÅqO.05 vs. non-diabetic mice. #PÅqO.05

vs. respective vehicle treated group.
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Figure 1-3. Effects of i.c.v. pretreatment with phorbol 12,13-dibutyrate (diamond) and

calphostin C (triangle) on the dose-response curve for the i.c.v. morphine-induced

Straub tai1 reaction in diabetic (closed symbol) and non-diabetic mice (open symbol).

Phorbol 12,13-dibutyrate (50 pmol) or calphostin C (3 pmol) was injected i.c.v. 60 min

before the administration of morphine. The Straub tail reaction was graded using
numerical scores, and was observed 20 min after the i.c.v. administration of morphine.

Each column represents the mean with S.E. for 9-15 mice in each group. "PÅqO.05 vs.

non-diabetic mice. #PÅqO.05 vs. respective vehicle treated group.
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Experiment 1-3: Possible involvement ofprotein kinase C in the attenuation of

           DAMGO-induced antinociception in diabetic mice.

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mg/kg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle. Mice with serum glucose levels above 400 mg/dl were considered

diabetic.

Antinociceptive assay.

       The antinociceptive response was evaluated by recording the latency in the tail-fiick

test using radiant heat as a stimulus. The intensity ofthe thermal stimulus was adjusted so that

the animal fiicked its tail in 2-4 s. A cut-off latency of30 s was used to prevent injury to the

tail. Animals which did not respond within 30 s were removed and assigned a score of 30 s.

The percent maximum possible effect (O/oMPE) was calculated for each animal as O/oMPE --

1OO x (post drug latency - pre drug latency)1(30 - pre drug latency).

Intracerebroventricular inj ection

       Intracerebroventricular (i.c.v.) administration was performed following the method

described in Chapter 1-2.

Drugs

       The following drugs were used: streptozotocin (Sigma Chemical Co., St. Louis, MO,

USA), [D-Ala2, N-MePhe`, Gly-o15] enkephalin (DAMGO; Peninsula Laboratories, Inc., San

Carlos, CA, USA), phorbol 12,13-dibutyrate (PDBu; Calbiochem-Novabiochem International,

San Diego, CA, USA) and calphostin C (Calbiochem-Novabiochem International, San Diego,

CA, USA). PDBu and calphostin C were dissolved in ethanol O.10/o in saline (O.90/o NaCl

solution). DAMGO was dissolved in saline. The doses of opioid agonist, PDBu and
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calphostin C in this study were determined as described previously (Narita et al. 1997).

Data ana]ysis

       The data are expressed as means Å} S.E. The statistical significance of differences

between groups was assessed with Student's t test (comparison of two groups) or an analysis

ofvariance (ANOVA) followed by the Bonferroni test (comparisons among multiple groups).

The potency ratio for non-diabetic mice and diabetic mice was calculated using Program 1 1 of

the Pharmacological Calculations system ofTallarida and Murray (1987).
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Results

Effect of i.c.v. pretreatment with phorbol 12,13-dibutyrate (PDBu) on the

antinociceptive effect induced by i.c.v.-administered DAMGO in diabetic and non-

diabetic mice.

       As shown in Fig. 1-4, i.c.v. administration of DAINt[GO (10 ng) produced an

average O/orvff'E of 84.2 Å} 9.3 O/o and 33.3 Å} 8.4 O/o in non-diabetic and diabetic mice,

respgctively. Diabetic mice were significantly less sensitive to i.c.v. DA]NilGO than non-

diabetic mice, as assessed by the tail-flick test. Pretreatment with PDBu (50 pmol, i.c.v.) 60

min prior to an i.c.v. challenge with DrmGO attenuated the antinociceptive effect of

DAINilGO (10 ng) in non-diabetic mice. The attenuation ofDAIV[GO-induced antinociception

in non-diabetic mice was reversed by concomitant pretreatment with calphostin C (3 pmol,

i.c.v.) In diabetic mice, however, PDBu (50 and 100 pmol) had no significant effect on the

antinociceptive effect ofDAINilGO (1O ng).

Effects of i.c.v. pretreatment with calphostin C on DAMGO-induced antinociception in

diabetic and non-diabetic mice.

       As shown in Fig. 1-5A, pretreatment with calphostin C, at a dose of 3 pmol, i.c.v.,

did not affect DA]N,fGO (10 ng, i.c.v.)-induced antinociception in non-diabetic mice.

Furthermore, calphostin C, at a dose of 3 pmol, also had no effect on the antinociception

induced by a lower dose (3 ng, i.c.v.) of DA]Nt[GO-induced antinociception. However,

pretreatment with a higher dose (10 pmol, i.c.v,) of calphostin C for 60 and 120 min

significantly increased DAMGO (3 ng, i.c.v.)-induced antinociception in non-diabetic mice

(Fig. 1--6).

       In diabetic mice, pretreatment with calphostin C (3 pmol, i.c.v.) for 60, 120 and 240

min, but not for 30 min, progressively increased DAMGO-induced antinociception. DnmGO

produced dose-dependent antinociception at 5.6-30 ng i.c.v. in diabetic mice and 3-10 ng i.c.v.

in non-diabetic mice. The antinociceptive potency ofi.c.v. Dnmoo in diabetic mice was less

than that in non-diabetic mice, as evidenced by a 2.3-fold rightward shift in the dose-response

curve for DAMoo-induced antinociception (Fig. 1-5B). Figure 1-5B shows that pretreatment

with calphoStin C (3 pmol, i.c.v.) for 60 min can prevent the rightward shift in the DAMoo

dose-response curve, which is indicative ofa decreased potency ofDAMoo in diabetic mice.

However, pretreatment with calphostin C (3 pmol) for 60 min had no effect on the dose-

- 28-



response curve for DAMGO-induced antinociception in non-diabetic mice.

       The effects of various doses of calphostin C on the antinociceptive effect of

DA]VIGO in both diabetic and non-diabetic mice are shown in Fig. 1-7. Pretreatment with

calphostin C for 60 min, at doses of1 to 20 pmol, did not have any effect on the

antinociception induced by DAMoo (10 ng). In diabetic mice, pretreatment with calphostin

C dose-dependently increased the antinociceptive effect ofDAMGO (1O ng).
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Figure 1-4. Effeot of i.c.v. pretreatment with phorbol 12,13-dibutyrate (PDBu) on

DAMGO-induced antinociception in diahetic and non-diabetic mice. PDBu (50 or 100
pmol) alone or a combination ofPDBu (50 pmol) and calphostin C (CP; 3 pmol) was
injected 60 min before the administration of DAMGO (10 ng, i.c,v.), Mice were tested

10 min after the injection ofDAMGO in the tai1-flick test. Each column represents the

mean with S.E. for 1O mice in each group. #PÅqO.05 compared with the vehicle-pretreated

group. "PÅqO.05 compared with respective non-diabetic mice.
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(open symbol) on the dose-response curves for DAMGO-induced antinociception in
diabetic (diamond) and non-diabetic (circle) mice, Calphostin C (3 pmol) was injected

i.c.v. 30, 60, 120 and 240 min (A) or 60 min (B) before the administration of DAMGO
(10 ng i.c.v.). Mice were tested 10 min after the injection ofDAMGO in the tail flick

test. Each column represents the mean with S,E. for 10 mice in each group. #PÅqO.05

compared with the vehiclepretreated group (open colunm). *PÅqO.05 compared with
respective non-diabetic mice.
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Figure 1-6. The effect of calphostin C on DAMGO-induced antinociception in non-
diabetic mice afiter difl7erent pretreatment times. Calphostin C (3 pmol, hatched column;

10 pmol, closed dotted column) was injected i.c.v. 60, 120 and 240 min before the
administration of DAMGO (5.6 ng, i.c.v,). Mice were tested 10 min after the injection

ofDAMGO in the tail-flick test. Each column represents the mean with S.E for 10 mice

in each group. "PÅqO.05 compared with the vehicle-pretreated group (open colurnn).
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Figure 1-7. Dose-response effect of i.c.v. pretreatment with calphostin C on DAMGO-

induced antinociception in diahetic and non-diabetic mice. Calphostin C and vehicle

(Vehi) were injected i.c.v. 60 min before the administration of DAMGO. Mice were

tested 10 min after the injection of DAMGO in the tai1-fiick test. Each column
represents the mean with S.E. for 10 mice in each group. #PÅqO.05 compared with the

vehicle-pretreated group. *PÅqO.05 compared with respective non-diabetic mice.

- 33-



Experiment 1-4: RoRe of intracellular calcium in modification of p- and 5-opioid

          receptor-mediated antinociception by diabetes in mice.

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age••matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted two weeks after injection

of streptozotocin or vehicle. Mice with serum glucose levels above 400 mg/dl were

considered diabetic.

Antinociceptive assay .
       The antinociceptive response was evaluated by recording the latency in the tail-fiick

test using radiant heat as a stimulus. The intensity ofthe thermal stimulus was adjusted so that

the animal flicked its tail in 2-4 s, To obtain the same magnitude of antinociceptive potency,

cut-off latencies of 10 and 30 sec were used for (-)-TAN67 and DAIVIGO, respectively.

Animals which did not respond within the cut-off time were removed and assigned a score

equivalent to the cut-offtime. The percent maximum possible effect (O/oMPE) was calculated

for each animal as O/oMPE = IQO Å~ (post-drug latency - pre-drug latency)1(cut-offtime - pre-

drug latency)

Intracerebroventricular inj ection

       Intracerebroventricular (i.c.v.) administration was performed following the method

described in Chapter 1-2.

Drugs

       The following drugs were used: streptozotocin (Sigma Chemical Co., St. Louis, Mo,

USA), [D-Ala2, N-MePhe`, Gly-olS]enkephalin (DAMoo; Peninsula Laboratories, Inc., San

Carlos, CA, USA), thapsigargin (Research Biochemical International, Natic, MA), ryanodine
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(Calbiochem-Novabiochem, San Diego, CA), EGTA (Sigma Chemical Co., St. Louis, Mo,

USA) and (-)-TAN67. (-)-TAN67 was synthesized by Dr. Nagase (Toray Laboratory,

Kamakura, Japan). Thapsigargin was dissolved in 200/o DMSO in saline (O.90/o sodium

chloride solution). DArvfGO, (-)-TAN67, EGTA, CaCl, and ryanodine were dissolved in

physiological saline. Thapsigargin was injected 1 h before the injection of agonists.

Ryanodine and CaC12 were injected 10 min before the injection of agonists. EGTA was

injected 15 min before the admjnistration of agonists. The dose and schedule for each opioid

agonist, EGTA, CaCl,, ryanodine and thapsigargin in this study were determined as described

previously (Smith and Stevens, 1995; Kamei et al., 1997)

Data analysis

       The data are expressed as means Å} S.E. The statistical significance ofdifferences

between groups was assessed with an analysis of variance (ANOVA) followed by the

Bonferroni test. The potency ratio for non-diabetic mice and diabetic mice was calculated

using Program 11 ofthe Pharmacological Calculation system ofTallarida and Murray (1987)
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Results

Effects of i.c.v. CaC12 and EGTA on DAMGO-induced antinociception in diabetic and

non-diabetic mice

       CaC12 injected i.c.v. (100-300 nmol) significantly and dose-dependently reduced the

antinociceptive effect ofDAMoo (10 ng, i.c.v.) in non-diabetic mice (Fig. 1-8A). As shown

in Fig. 1-8B, DAMoo given i.c.v. at doses of3-10 ng caused a dose-dependent inhibition of

the tail-flick response in non-diabetic mice. I.c.v. pretreatment with CaC12 (300 nmol)

attenuated this inhibition of the tail-flick response induced by i.c.v. DAMoo in non-diabetic

mice; the dose-response curve for DAMoo-induced antinociception was shifted to the left.

The potency ratio (950/o confidence limits (CL)) of DA]V[GO-induced antinociception in

calcium-treated non-diabetic mice versus saline-treated non-diabetic mice was 2.2 (2.0-2.5).

On the other hand, in diabetic mice, DAMoo (30 ng, i.c.v.)-induced antinociception was not

reduced by i.c.v. pretreatment with CaCl, (100-300 nmol; Fig. 1-8A). Moreover, CaCl, (300

nmol, i.c.v.) did not affect the potency ofDA]V[GO in diabetic mice. The potency ratio (950/o

CL) of antinociceptive effect of DAMoo in calcium-treated diabetic mice versus that in

saline-treated diabetic mice was 1.2 (1.0-1.3) (Fig. 1-8B). I.c.v. pretreatment with CaCl, (300

nmol) by itself had no effect on the baseline tail-flick latencies in diabetic (mean tail-flick

latencies of 2.59 Å} O.17 s, n=10 for before CaCl, treatment; 2.60 Å} O.12 s, n=10 for after

CaC12 treatment) and non-diabetic mice (mean tail-fiick latencies of 2.73 Å} O.14 s, n=10 for

before CaC12 treatment; 2.70 Å} O.15 s, n=10 for after CaCl, treatment). Furthermore, CaCl2

(100-300 nmol, i.c.v.) did not produce apparent behavioral changes, such as convulsion and

hyperlocomotion, in diabetic and non-diabetic mice.

       EGTA injected i.c.v. (1-60 nmol) significantly enhanced the antinociceptive effect of

DA]V[GO (5.6 ng, i.c.v.) in non-diabetic mice (Fig. 1-9A). Furthermore, i.c.v. pretreatment

with EGTA (30 nmol) enhanced the inhibition of the tail-flick response induced by i.c.v.

DAIV[GO in non-diabetic mice; the dose-response curve for DAIV[GO-induced antinociception

was shifted to the left. The potency ratio (950/o CL) of the DAMoo-induced antinociception

in EGTA-treated non-diabetic mice versus that in saline-treated non-diabetic mice was

2.5(1.7-3.7). Furthermore, in diabetic mice, DAMoo (10 ng, i.c.v.)-induced antinociception

was potentiated by i.c.v. pretreatment with EGTA (1-60 nmol; Fig. 1-9A). However,

significant potentiation ofDA]V{GO-induced antinociception was observed in diabetic mice at
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a higher dose of EGTA (30 and 60 nmol; Fig. 1-9A). EGTA (30 nmol, i.c.v.) increased the

potency of DAIV[GO in diabetic mice; the dose-response curve for DAIN([GO-induced

antinociception was shifted to the left. The potency ratio (950/o CL) of the antinociceptive

effect ofDAMoo in EGTA-treated diabetic mice versus that in saline-treated diabetic mice

was 2.4 (2.3-2.5) (Fig. 1-9B). Moreover, i.c.v. pretreatment with EGTA (60 nmol) by itself

had no effect on the tail-fiick latencies in diabetic (mean tail-flick latencies of 2.62 Å} O.13 s,

n= 10 for before EGTA treatment; 2.56 Å} O.14 s, n=10 for after EGTA treatment) and non-

diabetic mice (mean tail-fiick latencies of 2.59 Å} O.21 s, n=10 for before EGTA treatment;

2.64 Å} O.20 s, n==10 for after EGTA treatment). Furthermore, EGTA (1-60 nmol, i.c.v.) did not

affect general behavior in diabetic and non-diabetic mice.

Effects of i.c.v. CaCl2 and EGTA on (-)-TAN67-induced antinociception in diabetic and

non-diabetic mice

       In contrast with DA]N4GO, as shown in Fig. 1-10A, i.c.v. pretreatment with CaC12

(300 nmol) enhanced the inhibition ofthe tail-fiick response induced by i.c.v. (-)-TAN67 in

non-diabetic mice; the dose-response curve for (-)-TAN67-induced antinociception was

markedly shifted to the left. The potency ratio (950/o CL) of (-)-TAN67-induced

antinociception in calcium-treated non-diabetic mice versus saline-treated non-tdiabetic mice

was 3.6 (3.1-4.2). However, in diabetic mice, i.c.v. pretreatment with CaCl, (300 nmol) did

not affect (-)-TAN67-induced antinociception (Fig. 1-10A). The potency ratio (950/o CL) of

(-)-TAN67-induced antinociception in calcium-treated diabetic mice versus saline-treated

diabetic mice was 1.2 (O.8-1.8). As shown in Fig. 3B, i.c.v. pretreatment vvith EGTA (10

nmol) attenuated the inhibition of the tail-flick response induced by i.c.v. (-)-TAN67 in non-

diabetic mice; the dose-response curve for (-)-TAN67-induced antinociception was markedly

shifted to the right. The potency ratio (950/o CL) of (-)-TAN67-induced antinociception in

EGTA-treated non-diabetic mice versus saline-treated non-diabetic mice was 4.1 (2.3-9.1). In

diabetic mice, i.c.v. pretreatment with EGTA (10 nmoi) attenuated (-)-TAN67-induced

antinociception; the dose-response curve for (-)-TAN-67-induced antinociception was shifted

to the right (Fig. 1-10B). The potency ratio (950/o CL) of(-)-TAN67-induced antinociception

in EGTA-treated diabetic mice versus saline-treated diabetic mice was 7.7 (5.8-10.4).
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Effects of thapsigargin and ryanodine on DAMGO-induced antinociception in diabetic

and non-diabetic mice

       Thapsigargin injected i.c.v. (O.3-3 nmol) significantly and dose-dependently reduced

the antinociceptive effect ofDA]NilGO (10 ng, i.c.v.) in non-diabetic mice (Fig 1-11A). As

shown in Fig. 1-11B, i.c.v. pretreatment with thapsigargin (3 nmol) attenuated the inhibition

ofthe tail-flick response induced by i.c.v. DA]V[GO in non-diabetic mice; the dose-response

curve for DA]N4GO-induced antinociception was markedly shifted to the right. The potency

ratio (950/o CL) ofthe antinociceptive effect ofDrmGO in thapsigargin-treated non-diabetic

mice versus vehicle-treated non-diabetic mice was 3.0 (2.5-3.8). However, in diabetic mice,

DA}vlGO (30 ng, i.c.v.)-induced antinociception was not affected by i.c.v. pretreatment with

thapsigargin (3 nmol; Fig. 1-11A). I.c.v. pretreatment with thapsigargin did not affect the

potency of DAMoo in diabetic mice (Fig. 1-11B). The potency ratio (950/o CL) of the

antinociceptive effect ofDAIV[(iK) in thapsigargin-treated diabetic mice versus vehicle-treated

diabetic mice was 1.0 (1.0-1.1). I.c.v. pretreatment with thapsigargin (3 nmol) by itself, had

no effect on the tail-flick latencies in diabetic (tail-fiick latencies of2.72 Å} O.16 s, n==8 for

before thapsigargin treatment; 2.72 Å} O.16 s, n=8) and non-diabetic mice (mean tail-flick

latencies of2.71 Å} O.22 s, n=9 for before thapsigargin treatment; 2.83 Å} O.11 s, n==9 for after

thapsigargin treatment). Furthermore, thapsigargin (O.3-3.0 nmol, i.c.v.) did not produce any

apparent behavioral change in diabetic and non-diabetic mice, while it has been reported that

thapsigargin potently affect the intracellular calcium level (Takemura et al., 1991; Premack et

al., 1994).

       Ryanodine injected i.c.v. (O.3-3 nmol) significantly and dose-dependently enhanced

the antinociceptive effect of DAMoo (5.6 ng, i,c.v.) in non-diabetic mice (Fig. 1-12A).

Furthermore, ryanodine (3 nmol, i.c.v.) significantly enhanced the potency of DAMoo in

non-diabetic mice; the dose-response curve for DA)vfGO-induced antinociception as shifted to

the left (Fig. 1-12B). The potency ratio (95e/o CL) of DA])vrfGO-induced antinociception in

ryanodine-treated non--diabetic mice versus saline-treated non-diabetic mice was 2.2 (1.9-2.6).

In diabetic mice, DAIV[GO (10 ng, i.c.v.)-induced antinociception was also dose-dependently

enhanced by pretreatment with ryanodine (O.3-3 nmol; Fig. 1-12A). Moreover, ryanodine (3

nmol, i.c.v.) enhanced the potency ofDAMGO in diabetic mice; the dose-response curve for

DAIV[GO-induced antinociception was markedly shifted to the left (Fig. 1-12B). The potency

ratio (950/o CL) of DAMGO-induced antinociception in ryanodine-treated diabetic mice

versus saline-treated diabetic mice was 4.4 (4.0-4.8). I.c.v. pretreatment with ryanodine (3
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nmol) by itself did not affect the taii-flick latencies in diabetic (mean tai1-flick latencies of

2.78 Å} O.18 s, n--10 for before ryanodine treatment; 2.53 Å} O.12 s, n=10 for after ryanodine

treatment) and non-diabetic mice (mean tail-flick latencies of 2.36 Å} O.11 s, n=10 for before

ryanodine treatment; 2.31 Å} O.07 s, n=10 for after ryanodine treatment). Furthermore,

ryanodine (O.3-3 nmol) did not affect the general behavior in diabetic and non-diabetic mice.

Effects of thapsigargin and ryanodine on (-)-TAN67-induced antinociception in diabetic

and non-diabetic mice

       As shown in Fig. 1-13A, i.c.v. pretreatment with thapsigargin (3 nmol) potentiated

the inhibition of the tail-flick response induced by i.c.v.-administered (-)-TAN67 in non-

diabetic mice; the dose-response curve for (-)-TAN67-induced antinociception was markedly

shifted to the left. The potency ratio (950/o CL) of (-)-TAN67-induced antinociception in

thapsigargin-treated non-diabetic mice versus vehicle-treated non-diabetic mice was 3. 1 (2.5-

3.9). In diabetic mice, i.c.v pretreatment with thapsigargin (3 nmol) did not affect (-)-TAN67-

induced antinociception (Fig. 1-13A). The potency ratio (950/o CL) of (-)-TAN67•-induced

antinociception in thapsigargin-treated diabetic mice versus vehicle-treated diabetic mice was

1.4 (O.8-2.6). Ryanodine (3 nmol, i.c.v.) did not affect the potency of (-)-TAN67 in non-

diabetic mice (Fig. 1-13B). The potency ratio (950/o CL) of (-)-TAN67-induced

antinociception in ryanodine-treated non-diabetic mice versus saline-treated non-diabetic

mice was l.O (O.7-1.4). In diabetic mice, however, ryanodine (3 nmol, i.c.v.) attenuated (-)-

TAN67-induced antinociception; the dose-response curve for (-)-TAN67-induced

antinociception was markedly shifted to the right (Fig. 1-13B). The potency ratio (950/o CL) of

(-)-TAN67-induced antinociception in ryanodine-treated diabetic mice versus saline-treated

diabetic mice was 4.0 (2.7--6.2).
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Figure 1-7. (A) dose-response effect ofi.c.v. pretreatment with CaC12 (100 and 300 nmol,

hatched column) on DAMGO (10 or 30 nmol, i.c.v.)-induced antinociception in diabetic

and non-diabetic mice. (B) effect of i.c.v. pretreatment with CaC12 (300 nmol, closed

symbol) and its vehicle (open symbol) on the dose-response curve for DAMGO-induced

antinociception in diabetic (diamond) and non-diabetic mice (circle). Non-diabetic mice

injected with DAMGO received either saline (open circles) or CaC12 (300 nmol, closed

circles). Diabetic mice injected with DAMGO received either saline (open diamonds) or

CaC12 (300 nmol, closed diamonds). CaC12 was injected 10 min before the administration

ofDAMGO. Mice were tested 10 min after the injection ofDAMGO in the tail-fiick test.

Each column and point represents the mean with S.E. for 10-15 mice in each group.
"PÅqO.05 compared with respective non-diabetic mice. #PÅqO.05 compared with the saline

(open column)-pretreated group.
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Figure 1-8. (A) dose-response effect of i.c.v. pretreatment with EGTA (1-60 nmol,
hatched column) on DAMGO (10 or 5.6 nmol, i.c.v.)-induced antinociception in dial)etic

and non-diahetic mice. (B) effect of i.c.v. pretreatment with EGTA (30 nmol, closed

symbol) and saline (open symbol) on the dose-response curve for DAMGO-induced
antinociception in diabetic (diamond) and non-diabetic mice (circle). Non-diabetic mice

injected with DAMGO received either saline (open circles) or EGTA (30 nmol, closed

circles). Diahetic mice injected with DAMGO received either saline (open diamonds) or

EGTA (30 nmol, closed diamonds). EGTA was injected 15 min before the
administration ofDAMGO. Mice were tested 10 min after the injection ofDAMGO in
the tail-flick test. Each column and point represents the mean with S.E. for 10-15 mice

in each group. "PÅqO.05 compared with respective non-diabetic mice. #PÅqO.05 compared

with the saline (SA, open column)-pretreated group.
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Figure 1-9. (A) the effect ofi.c.v. pretreatment with CaC12 (300 nmol, closed symbol)

and saline (open circle) on the dose-response curve for (-)-TAN67-induced
antinociception in diabetic (diamond) and non-diabetic (circle) mice. Non-diabetic mice

injected with (-)-TAN67 received either saline (open circles) or CaCl2 (300 nmol, closed

circles). Diabetic mice injected with (-)-TAN67 received either saline (open diamonds)

or CaC12 (300 nmol, closed diamonds). CaC12 was injected 10 min before the
administration of (-)-TAN67, Mice were tested 30 min after the injection of (-)-TAN67

in the tail-fick test. Each point represents the mean with S.E. for 10-15 mice in each

group. (B) the effect of i.c.v. pretreatment with EGTA (10 nmol, closed symbol) and

saline (open symbol) on the dose-response curve for (-•)-TAN67 in diabetic (diamond)

and non--diahetic (circle) mice. Non-diabetic mice injected with (-)-TAN67 received

either saline (open circles) or EGTA (10 nmol, closed circles). Diabetic mice injected

with (-)-TAN67 received either saline (open diamonds) or EGTA (10 nmol, closed
diamonds). EGTA was injected 15 min before the administration of (-)-TAN67. rVlice
were tested 30 min after the injection of (-)-TAN67 in the tail-flick test. Each point

represents the mean with S.E. for 10-15 mice in each group.
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Figure 1-10. (A) dose-response effect of i.c.v. pretreatment with thapsigargin (hatched

column) on DAMGO (30 or 10 nmol, i.c.v.)-induced antinociception in diabetic and
non-diabetic mice. (B) effect of i.c.v. pretreatment with thapsigargin (3 nmol, closed

symbol) and its vehicle (open symbol) on the dose-response curve for DAMGO-
induced antinociception in diahetic (diamond) and non-diabetic mice (circle). Non-

diahetic mice injected with DAMGO received either vehicle (200/o DMSO, open circles)

or thapsigargin (3 nmol, closed circles). Diabetic mice injected with DAMGO received

either vehicle (20e/o DMSO, open diamonds) or thapsigargin (3 nmol, closed diamonds).

Thapsigargin was injected 60 mh before the administration of DAMGO. mace were
tested 10 min after the injection of DAMGO in the tail-flick test. Each column and

point represents the mean with S.E. for 10-15 mice in each group. "PÅqO.05 compared

with respective non-diabetic mice. #PÅqO.05 compared with the vehicle (open column)-

pretreated group.
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Figure 1-11. (A) dose-response effect of i.c.v. pretreatment with ryanodine (hatched

column) on DAMGO (10 or 5.6 nmol, i.c.v.)-induced antinociception in diabetic and
non-diabetic mice. (B) effect of i.c.v. pretreatment with ryanodine (3 nmol, closed

symbol) and its vehicle (open symbol) on the dose-response curve for DAMGO-induced
antinociception in diabetic (diamond) and non-diabetic (circle) mice. Non-diabetic mice

injected with DAMGO received either saline (open circles) or ryanodine (3 nmol, closed

circles). Diabetic mice injected with DAMGO received either saline (open diamonds) or

ryanodine (3 nmol, closed diamonds). Ryanodine was injected 10 min before the
administration ofDAMGO. Mice were tested 10 min after the injection ofDAMGO in
the tail-flick test Each point represents the mean with S.E. for 10-15 mice in each

group.
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Figure 1-12. (A) the effects (3 nmol, closed
circle) and its vehicle (open symbol) on the dose-response curve for (•-)•-TAN67-induced

antinociception in diahetic (diamond) and non-diabetic (circle) mice. Non-diahetic mice

injected with (-)-TAN67 received either vehicle (200/e DMSO, open circles) or
thapsigargin (3 nmol, closed circles). Diabetic mice injected with (-)-TAN67 received

eithervehicle (20e/o DMSO, open diamonds) or thapsigargin (3 nmol, closed diamonds).

Thapsigargin was injected 60 and min before the administration of (-)-TAN67. Mice
were tested 30 min after the injection of (-)-TAN67 in the tail-fiick test. Each point

represents the mean with S.E. for 10-15 mice in each group. (B) the effects of i.c.v.

pretreatment with ryanodine (closed symbol) and saline (open symbol) on the dose-

response curve for (-)-TAN67-induced antinociception in diabetic (diamond) and non-

diabetic (circle) mice. Non-diahetic mice injected with (-)-TAN67 received either saline

(open circles) or ryanodine (3 nmol, closed circles). Diabetic mice injected with (-)-

TAN67 received either saline (open diamonds) or ryanodine (3 nmol, closed diamonds).

Ryanodine was injected 10 min before the administration of (-)-TAN67, Mice were
tested 30 rnin after the injection of (-)-TAN67 in the tail-flick test. Each point

represents the mean with S.E. for 10-15 mice in each group.
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Discussion

       The results of "Experiment 1-1" clearly indicated that the Straub tail reaction

induced by s.c. administration of morphine is significantly antagonized by P-funaltrexamine,

which suggests that p-opioid receptors may play an important role in the morphine-induced

Straub tail reaction. These results are consistent with previous reports ofKameyama and Ukai

(1979) and Narita et al. (1993). In the present study, I also observed that the Straub tail

reaction induced by s.c. administration of morphine is significantly less in diabetic mice than

in non-diabetic mice. This result supports the previous suggestion that mice with diabetes are

selectively hypo-responsive to p-opioid receptor-mediated pharmacological actions (Kamei et

al., 1992a, 1992b). There was no significant difference in the pre-drug Straub tail reaction

score between diabetic and non-diabetic mice. Furthermore, motor incoordination was not

observed in diabetic mice. These results further support the conclusion that the hypo-

responsive to morphine-induced Straub tail reaction in diabetic mice may be due to the

dysfunction of p-opioid receptors, but not of motor coordination.

       It has been proposed that pi-opioid receptors, but not pt,-opioid receptors, mediate

supraspinal antinociception, since Heyman et al. (1988) and Paul et al. (i989) reported that

naloxonazine, a selective pti-opioid receptor antagonist, selectively attenuates i.c.v.

administered DAMGO-induced antinociception, but not intrathecally administered DA]Nt[GO-

induced antinociception. In this regard, Kamei et al. (1992b, 1994a) recently demonstrated

that the antinociceptive effect of i.c.v. morphine in diabetic mice was significantly less than

that in non-diabetic mice. Furthermore, the antinociceptive effect of i.c.v. morphine was

significantly reduced in both diabetic and non-diabetic mice following pretreatment with

naloxonazine (Kamei et al., 1994a). However, there were no significant differences in the

antinociceptive effects of i.t.-administered morphine in diabetic and non-diabetic mice

(Kamei et al., 1992b, 1994a). Moreover, naloxonazine had no significant effect on the

antinociceptive effect of i.t. morphine in either diabetic or non-pdiabetic mice (1994b). The

sensitivities of the antinociceptive effects of i,c.v. and i.t. morphine to naloxonazine agree

with the suggestions of other investigators (Heyman et al., 1988; Paul et al., 1989) that pti-

opioid receptors play a major role in supraspinal antinociception, while p2-opioid receptors

play a major role in spinal antinociception, Based on these results, Kamei et al. (l994a)

previously concluded that mice with diabetes are selectively hypo-responsive to pi-opioid

receptor-mediated pharmacological action, but not to that which is mediated by p2-opioid
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receptors. This hypothesis is further supported by the present results that 1) the Straub tai1

reaction induced by s.c. administration ofmorphine is significantly less in diabetic mice than

in non-diabetic mice, and 2) naloxonazine, a selective pi-opioid receptor antagonist,

significantly reduced the Straub tai1 reaction induced by s.c. administration of morphine in

both non-diabetic and diabetic mice, indicating that pi-opioid receptors play a major role in

the morphine-induced Straub tail reaction.

       Although Murray and Cowan (1990) suggested that supraspinal 6-opioid receptors

are not involved in the opioid agonist-induced Straub tail reaction, the role of spinal 6--opioid

receptors in opioid-induced Straub tai1 reaction is unclear. Narita et al, (1993) suggested that

K-opioid receptors are not involved in opioid-induced Straub tai1 reaction. Furthermore,

Kamei et al. (1992b) also suggested that there was no significant change in the function of

spinal 6-opioid receptors between diabetic and non-diabetic mice. It has been shown that the

morphine-induced Straub tail reaction is produced at the level not only ofthe supraspinal site

but a!so spinal site. In the present study, B-funaltrexamine and naloxonazine only partially

antagonized the morphine-induced Straub tail reaction in both diabetic and non-diabetic mice.

Although the detail mechanisms of this partial antagonism are unclear, it is possible that

spinal 6-opioid receptors might be involved in the morphine•-induced Straub tai1 reaction.

Further studies are needed to resolve this problem.

       There have been several suggestions regarding the possible functions of protein

kinase C (PKC), including involvement in secretion and exocytosis, modulation of ion

conductance, regulation of receptor interaction with components of the signal transduction

apparatus, smooth muscle contraction, gene expression and cell proliferation (Nishizuka,

1988). PKC regulates several cellular functions through the phosphorylation of proteins,

including some receptors. The results of "Experiment 1-2" demonstrated that the i.c.v.

morphine•-induced Straub tail-reaction in non-diabetic mice is attenuated by i.c.v. pretreatment

with PDBu (50 pmol), which stimulates PKC. Many investigators have proposed that the

phosphorylation of receptors by PKC may be a possible mechanism for the development of

desensitization (Shearman et al., 1989). Activation of PKC by phorbol ester attenuates the

opioid-induced inhibition of adenylyl cyclase activity in neuroblastoma Å~ glioma NGI08-15

hybrid cells (Louie et al., 1990). Furthermore, activation ofPKC by phorbol ester potentiates

the desensitization of pt-opioid receptor-induced K' current (Chen and Yu, 1994; Zhang et al.,

1996). We previously indicated that i.c.v. pretreatment with PDBu attenuates DAIV[GO- and

morphine-induced antinociception (Narita et al., 1997). Thus, these previous results and the
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present data suggest that the activation of PKC by phorbol ester attenuates the

pharmacological action of p-opioid receptor agonists.

       In contrast, PDBu had no significant effect on the morphine-induced Straub tai1

reaction in diabetic mice. Furthermore, i.c.v. pretreatment with calphostin C (10 pmol), which

had no significant effect on the morphine-induced Straub tai1 reaction in non-diabetic mice,

significantly and dose-dependently reversed the attenuation of the morphine-induced Straub

tail reaction in diabetic mice. Indeed, there was no significant difference in the potency ofthe

morphine-induced Straub tail reaction between calphostin C-treated diabetic mice and naive

non-diabetic mice. Calphostin C inhibits the binding of diacylglycerol to the regulatory

domain of PKC (Kobayashi et al., 1989). Thus, it is likely that the attenuation of several of

morphine's pharmacological actions, i.e. antinociception and the Straub tail reaction, in

diabetic mice may be due, in part, to the increased phosphorylation of pt-opioid receptors by

the activation ofPKC.

       The morphine-induced the Straub tail reaction involves both central and peripheral

components of the nervous system. The results from "Experiment 1-1" indicated that the

systemic morphine-induced Straub tail reaction in non-diabetic mice is greater than that in

diabetic mice. In Experiment 1-2, the i.c.v. morphine-induced Straub tail reaction in non-

diabetic mice was greater than that in diabetic mice, as with the systemic administration of

morphine. Many investigators have indicated that the central administration of morphine

induces the Straub tail reaction in mice (Narita et al., 1994; Nath et al., 1994). Diabetes

mellitus causes various complications, including dysfunction of skeletal muscles and

peripheral nerves (Pain and Garlick, 1974). It has been reported that the activation of PKC

induces the dysfunction of skeletal muscle in streptozotocin-induced diabetic mice (Nojima et

al., 1995). Thus, it is possible that the dysfunction ofperipheral neurons andlor muscle causes

the attenuation of the systemic morphine--induced Straub tail reaction in diabetic mice.

However, the i.c.v. administration of morphine induced the Straub tail reaction in both

diabetic and non-diabetic mice. Furthermore, i.c.v. pretreatment with calphostin C reverses

the attenuation of the i.c.v. morphine-induced Straub tail reaction in diabetic mice. These

results indicate that the attenuation of the morphine-induced Straub tail reaction in diabetic

mice may be due to the desensitization of supraspinal p-opioid receptors, but not the

dysfunction ofperipheral nerves and muscles, by the activation ofPKC.

       The results from "Experiment 1-3" demonstrated that i.c.v. pretreatment with PDBu

(50 pmol) attenuated the inhibition in the tail-flick test induced by i.c.v. DA]N4GO in non-
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diabetic mice. Furthermore, the attenuation of i.c.v. DArV[GO-induced antinociception by

PDBu was reversed by concomitant i.c.v. pretreatment with calphostin C, a selective PKC

inhibitor, These results are consistent with our previous observation and support the

suggestion that the attenuation by PDBu of p-opioid receptor-mediated antinociception is

specifically mediated by the activation ofPKC (Narita et al., 1997).

       In contrast, PDBu, by itself, had no significant effect on DAMGO-induced

antinociception in diabetic mice. Furthermore, pretreatment with calphostin C (3 pmol, i.c.v.),

which had no significant effect on DAMoo-induced antinociception in non-diabetic mice,

significantly and dose-dependently increased DAMGO-induced antinociception in diabetic

mice. Indeed, there was no significant difference in the potency of DAMGO-induced

antinociception between calphostin C-pretreated diabetic mice and naive non-diabetic mice.

In the present study, moreover, I found that pretreatment with a higher dose of calphostin C

(10 pmol) potentiated low-dose (3 ng, i.c.v.) Dnmoo-induced antinociception in non-

diabetic mice. As noted above, calphostin C specifically inhibits the binding ofdiacylglycerol

to the regulatory domain of PKC (Kobayashi et al., 1989), and therefore is a more selective

inhibitor than staurosporine or 1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride

(Hd•7), which interact with the ATP-binding site ofPKC that shares substantial homology with

other protein kinases. The phosphorylation of receptors by PKC has been proposed to be a

possible mechanism for the development of tolerance or desensitization (Shearman et al.,

1989). According to recent cloning studies, several potential phosphorylation sites by protein

kinases are present in cloned opioid receptors, including p-opioid receptors (Miotto et al.,

1995). Previously, we reported that i.c.v. pretreatment with PDBu produced a calphostin C-

sensitive attenuation ofDAIV[GO-induced antinociception (Narita et al., 1997). These results

suggest that p-opioid receptors can be phosphorylated by the activation of PKC, and this

receptor phosphorylation by PKC leads to desensitization of p-opioid receptor-mediated

responses. Several studies have suggested that PKC systems may be up-regulated in diabetes

(Craven and DeRubertis, 1989; Wolf et al., 1990; Shiba et al., 1993). We recently reported

that at least 30 to 60 min of pretreatment is required for PDBu to desensitize p-opioid

receptor-mediated responses (Narita et al., 1997). In the present study, at least 60 min of

pretreatment was required for calphostin C to increase DAMGO-induced antinociception in

diabetic mice. Thus, it is possible that the attenuation of the antinociceptive effect of

DA]NilGO in diabetic mice may be due, in part, to the increased phosphorylation of pt-opioid

receptors by the activation ofPKC.
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       In "Experiment 1-4", i.c.v. administration of CaC12 which has been reported to

increase the intracellular concentration of calcium, attenuated the antinociceptive effect of

DAMGO, an p-opioid receptor agonist in non-diabetic mice. Moreover, i.c.v. administration

of EGTA, which has been reported to reduce the intracellular concentration of calcium,

enhanced the antinociceptive effect of DA}vlGO in non-diabetic mice. This observation is

consistent with a previous report that calcium antagonized morphine-induced antinociception

while EGTA potentiated morphine-induced antinociception (Harris et al, 1975). Thus, these

results and present results indicate that pt-opioid receptor agonist-induced antinociception is

reduced by an increase in intracellular Ca2' levels. In the present study, I observed that

pretreatment with thapsigargin reduced DAMoo-induced antinociception in non-diabetic

mice. This result is consistent with a previous finding that i.c.v. pretreatment with

thapsigargin reduced the antinociceptive effect of morphine (Smith and Stevens, 1995). It has

been reported that thapsigargin selectively inhibits Ca2' uptake into the inositol 1,4,5-

uisphosphate (P3)-sensitive microsomal Ca2' pool by inhibiting ATP/Mg2'-dependent A[rPase

(Bian et al., 1991). The subsequent depletion ofthis pool activates a low-conductance, Ca2'-

selective, non-voltage activated membrane current (Takemura et al., 1991; Premack et al.,

1994). Thus, the increase in cytosolic Ca2' caused by thapsigargin blocks the antinociceptive

effect of DAMoo. Furthermore, pretreatment with ryanodine potentiates the antinociceptive

effect ofDAMGO. It has been reported that ryanodine blocks Ca2' release from Ca2'lcaffeine-

sensitive microsomal pools, which is involved in the phenomenon of Ca2'-induced Ca2'

release (McPherson et al., 1991). It has been reported that ryanodine blocks Ca2' release and

accumulation by either preventing the opening of ryanodine channels or stabilizing an open

subconductance state (McPherson et al., 1991). Furthermore, it has been reported that

ryanodine reduces the rate at which [Ca2']i increases with Ca2' entry (Friel and Tsien, 1992).

Thus, it is possible that the potentiation of DAIV[GO-induced antinociception caused by

ryanodine may be due to a decrease in [Ca2']i. Therefore, the present results suggest that an

increase in cytosolic Ca2' levels antagonize pt-opioid receptor agonist-induced

antmoclceptlon.

       In contrast to DA]N4GO, I observed that calcium injected i.c.v. enhanced the

antinociceptive effect of (-)-TAN67, a selective 6,-opioid receptor agonist (Kamei et al.,

1997), in non-diabetic mice. Moreover, i.c.v. EGTA blocked (-)-TAN67-induced

antinociception in non-diabetic mice. Bhargava and Zhao (1996) reported that competitive

and noncompetitive antagonists ofthe N-methyl-D-aspartate (NMDA) receptor antagonize the
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analgesic action of6i-opioid receptor agonists. Furthermore, recent studies have reported that

calcium channel blockers attenuate the antinociception induced by 6 and K but not p-opioid

receptor agonists (Spampinato et al., 1994). These results and those of the present study

suggest that 6-opioid receptor agonist-induced antinociception is potentiated by an increase in

intracellular Ca2' levels. Thus, the present results suggest that cytosolic calcium differentially

modulates the p- and 6-opioid receptor-induced antinociception. Furthermore, in the present

study, I observed that (-)-TAN67-induced antinociception in non-diabetic mice is potentiated

by i.c.v. pretreatment with thapsigargin. As mentioned above, thapsigargin causes the increase

in cytosolic calcium levels. Therefore, it is possible that 6-opioid receptor agonist-mediated

antinociception is potentiated by the increase in cytosolic calcium levels. Thus, the present

results suggest that cytosolic calcium differentially modulates the p- and 6-opioid receptor

agonist-induced antinociception. On the other hand, (-)-TAN67-induced antinociception in

non-diabetic mice was not affected by pretreatment with ryanodine, which decreased

cytosolic calcium levels. It is not clear why ryanodine does not affect (-)-TAN67-induced

antinociception in non-diabetic. It has not been shown that the p and 6 opioid receptors

regulating antinociception are always expressed on the same neuron, or even in the same

pain-regulating neural pathway. Thus, it is possible that p-opioid receptor expressing neurons

show the expected changes in calcium levels in response to ryanodine, while neurons

expressing 6-opioid receptor are not directly affected by ryanodine. However, Miyamae et al.

(1993) reported that a cloned 6-opioid receptor expressed in Xenopus oocytes can mediate

agonist activation of phospholipase C. It has recently been reported that 6-opioid receptor-

mediated increases in intracellular [Ca2']i result from IP3-induced Ca2' release from

intracellular stores (Smart and Lambert, 1996a). It is suggested that the activation of6-opioid

receptor enhances [Ca2']i presumably via a phospholipase C mechanism (Connor et al., 1994).

Thus, it is possible that the lack of an effect by ryanodine on (-)-TAN67-induced

antinociception may be due to the differences between ryanodine receptor- and IP3 receptor-

mediated intracellular calcium release.

       The detailed mechanisms which underlie this differential modulation ofthe pt- and 6-

opioid receptor agonist-induced antinociception by intracellular calcium are unclear. Welch

and Daie Dunlow (1993) reported that the antinociception produced by intrathecal injection of

morphine was panially blocked by glyburide, an A[I'P-gated potassium channel blocker, but

not apamin, a calcium-gated potassium channel blocker, whereas that produced by DPDPE

was completely reduced by apamin. These results suggest that the antinociception induced by
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p-opioid receptor agonists is mediated by the activation of A[I'P-gated potassium channels,

whereas that induced by 5-opioid receptor agonists is mediated by the activation of calcium-

gated potassium channels. Therefore, it is possible that 6-opioid receptor-mediated

antinociception may be mediated through the enhancement of intracellular calcium levels. It

is likely that the differential modulation of pt- and 6-opioid receptor agonist-induced

antinociception by intracellular calcium may be due to the different mechanisms of pt- and 6-

opioid receptor-mediated signal transduction. On the other hand, recent study has

demonstrated a differential distribution of pt and 6 receptors in the rat brain. The u opioid

receptors were detected in some conical and thalamic nuclei, including the pretectal region,

which involved in the central pain-inhibiting system, and 6 opioid receptors in cortex and

limbic structures (Goodman et al, 1980). Thus, it is possible that there are several supraspinal

sites at which the p- and 6- opioid receptor agonists can induce antinociception. Furthermore,

it has been reported that antinociception is produced by microinjection of morphine, a p-

opioid receptor agonist, into a variety ofbrain sites including the periaqueductal gray (PAG),

locus coeruleus, mesencephalic reticular formation and structures within the rostral

ventromedial medulla (Jensen and Yaksh, 1986). In contrast to pt-opioid receptor agonists, the

brain sites which mediate the antinociception induced by 6-opioid receptor agonists have yet

to be identified. Microinjection of DPDPE into either the PAG or the locus coeruleus did not

produce antinociception (Bodnar et al., 1988). Thus, it is possible that DAMoo and

(-)TAN67 dose not act on the same brain region to produce antinociception. Therefore, it

seems likely that differential modulation of p- and 6-opioid receptor agonist-induced

antinociception by intracellular calcium may reflect the differences in the primary sites of

action of p- and 6-opioid receptor agonists.

       The antinociceptive effect of DAMGO in diabetic mice is less than that in non-

diabetic mice. I observed that agents which increase intracellular calcium, i.e. Ca2' and

thapsigargin, did not affect DAMoo-induced antinociception in diabetic mice. Moreover,

agents which reduce intracellular calcium levels, i.e. EGTA and ryanodine, significantly

potentiated the antinociceptive effect of DAMGO in diabetic mice. However, the effective

dose of EGTA for the potentiation of DrmGO-induced antinociception in diabetic mice is

greater than that in non-diabetic mice. Thus, it is likely that the attenuation of DAMGO-

induced antinociception in diabetic mice may be due to enhanced intracellular calcium levels.

The antinociceptive effTect of (-)-TAN67 in diabetic mice is greater than that in non-diabetic

mice. Moreover, EGTA blocks the antinociceptive effect of (-)-TAN67 in diabetic mice. On
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the other hand, calcium does not affect (-)-TAN67•-induced antinociception in diabetic mice.

These results suggest that the enhancement of (-)-TAIN67-induced antinociception in diabetic

mice may be due in part to the enhancement of the Ca2' level. It has been reported that

chronic excessive intracellular calcium overload might induce cardiac dysfunction in chronic

diabetes (Heyliger et al., 1987; Nishio et al., 1990). In peripheral nerves of diabetic rats,

mitochondrial and axoplasmic calcium levels were found to be increased by electron-probe X-

ray microanalysis (Lowery et al., 1990). Moreover, voltage-dependent calcium currents

through L- and N-channels are enhanced in dorsal root ganglion neurons ofBBIWor rats and

diabetic mice in vivo (Hall et al., 1995; Kostyuk et al., 1995). These results suggest that the

diabetic state may affect [Ca2']i in neurons and various tissues. Thus, these results and the

present data strongly suggest that the enhancement of 6-opioid receptor agonist-induced

antinociception in diabetic mice may be due to increased [Ca2']i. Furthermore, it has been

suggested that the ability of caffeine, a ryanodine receptor agonist, to mobilize Ca2' from

intracellular stores is impaired in the diabetic aorta, since caffeine-induced contraction is

significantly reduced in diabetic aorta compared with that in control aorta. Moreover, it has

been reported that the activity of Ca2'-ATPase is impaired in the diabetic rat (Janicki et al,

1994). In the present study, I observed that the antinociception induced by (-)-TAN67 in

diabetic mice, but not in non-diabetic mice, was reduced by pretreatment with ryanodine.

Furthermore, i.c.v. pretreatment with thapsigargin, which inhibits Ca2'-ATPase, affected both

DAMoo- and (-)-TAN67-induced antinociception in non-diabetic mice, but not in diabetic

mice. Therefore, these results strongly suggest that diabetic state may alter intracellular

calcium store function. It is possible that the modification of DA]V[GO- and (-)-TAN67-

induced antinociception by diabetes may be due to excessive intracellular calcium overload

following changes in calcium store function. In conclusion, the antinociceptive effects of p-

and 6-opioid receptor agonists are modulated differently by intracellular calcium. Furthermore,

changes in of p- and 6-opioid receptor agonist-induced antinociception in diabetic mice may

be due to excessive intracellular calcium overload caused by the dysfunction ofcalcium store

function.
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Chapter 2

Modification ofnaloxone-precipitated withdrawal syndrome
by diabetes in mice: possible involvement ofprotein kinase C

              and intracellular calcium
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Introduction

       Chronic administration of morphine produces physical dependence, which is

exhibited by various specific and vegetative signs after withdrawal of morphine or

administration of an opioid antagonist (Blasic et al., 1973; Wei et al., 1973). The degree of

physical dependence on morphine may be assessed by the intensity ofthe withdrawal signs,

or by the amount ofnaloxone required to precipitate an effect ofa given intensity (Way et al.,

1968). Morphine withdrawal signs are characterized by the expression ofjumping, ptosis,

"wet dog" shakes and diarrhea (Way et al., 1968; Way et al., 1969).

       Suzuki et al. (1992) previously suggested that pt-opioid receptor subtypes may be

differentially modulate some naloxone-precipitated withdrawal signs in morphine-dependent

mice, since morphine-dependent CXBK mice, which are known to be selectively deficient in

pi-opioid receptors, possess a differential sensitivity to naloxone challenge with regard to

body weight loss, diarrhea and ptosis and jumping and body shakes (Suzuki et al., 1992a).

Furthermore, Kamei et al. (1994a) proposed that mice with diabetes are selectively

hyporesponsive to activation of p,-opioid receptors, but are normally responsive to activation

of pt2-opioid receptors. Thus, it is possible that p,-opioid receptor-mediated naloxone-

precipitated withdrawal signs may be selectively reduced in morphine-dependent diabetic

mice, as in CXBK mice.

       Thus, in Experiment 2-1, I compared the development of morphine dependence in

diabetic and non-diabetic mice to clarify our hypothesis that diabetic mice are selectively

hyporesponsive to pti-opioid receptor-mediated pharmacological action, but not to that

mediated by pt,-opioid receptors.

       The effects of opioids on gastrointestinal motor function have been attributed both to

action within the central nervous system and to direct action on peripheral receptors within

the enteric nervous system (Heyman et al., 1988; Porreca and Burks, 1983; Porreca et ai,

1984; Tavani et al, 1980). Pick et al (1991) and Heyman et al (1988) suggested that the

antitransit propenies of p-opioid receptor agonists, such as morphine and [D-Ala2, N-methyl-

Phe`, Gly5-ol]enkephalin (DAN[GO), are mediated mainly by naloxonazine-insensitive (p2)

opioid receptors, since the gastrointestinal antitransit effect of p-opioid receptor agonists is

antagonized by pretreatment with B-funaltrexamine, but not with naloxonazine. On the other

hand, naloxonazine antagonizes ltopioid receptor-mediated supraspinal antinociception,

implying that pti-opioid receptors mediate supraspinal antinociception (Heyman et al, 1988;
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Paul et al., 1989). We previously reported that the antinociceptive effects ofi.c.v., but not i.t.,

administration of pt-opioid receptor agonists in non-diabetic mice were markedly greater than

those in diabetic mice (Kamei et al, 1992a, 1992b, 1994a). Furthermore, in Chapter 1, I

indicated that the morphine-induced Straub tail reaction, which is mediated mainly by pi-

opioid receptors, was greater in non-diabetic mice than in diabetic miee. Therefore, Kamei et

al. (1994a) suggested that diabetic mice are selectively hyporesponsive to pi-opioid receptor-

mediated pharmacological action, but not to that which is mediated by p2-opioid receptors. In

Experiment 2-2, to examine the hypothesis, I investigated the influence of diabetes on the

inhibition ofgastrointestinal transit by the s.c. administration of morphine in mice.

       The central noradrenergic system has been hypothesized to play an important role in

the development of physical dependence on p-opioid agonists and in the expression of their

withdrawal signs (Redmond and Krysatal, 1984). It has been reported that the firing rate of

noradrenergic neurons in locus ceruleus (LC), which is a cluster of noradrenaline (NA)-

containing cell bodies in the brain, increases during naloxone-precipitated withdrawal from

morphine dependence (Aghajanian, 1978). Furthermore, in a biochemical study, the level of

3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), the major metabolite of NA, in the

cerebral cortex which projects from the LC, increased following naloxone injection in

morphine-dependent rats (Crawley et al., 1979), These biochemical changes and various

withdrawal signs were blocked by clonidine, an ct,-agonist (Crawley et al., 1979; Tseng et al.,

1975; Laverty and Roth, 1980). Thus, these reports suggest that the central noradrenergic

system may play a significant role in morphine withdrawal.

       The aim of Experiment 2-3 was to investigate the role of noradrenergic systems in

the modulation of naloxone-precipitated morphine withdrawal by diabetes. The effects of

diabetes on naloxone-precipitated jumping and naloxone-induced changes in NA turnover

were evaluated in morphine-dependent mice.

       The cellular and molecular bases of opiate addiction remain largely unknown (Cox,

1990; Nestler, 1992). The sensitization ofthe adenylate cyclasel cyclic AMPI cyclic me-

dependent protein kinase (PKA) transduction system has been demonstrated to be robust and

to show a consistent compensatory response to the sustained inhibition of opioid receptors. It

has been reported that the acute administration of opiate receptor agonists induces the

inhibition of adenylate cyclase through guanine nucleotide-binding Gilo proteins and

decreases the basal production of cyclic AMP (Nestler et al., 1989). In contrast, chronic

treatment with these drugs results in upny-regulation of this transduction system. Indeed, it has
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been reported that chronic treatment with morphine increases both basal and stimulated

production of cyclic AMP (Sharma et al., 1975, Garcia-Sevilla et al., 1987) and specific G

protein and their messenger (m)RNAs (Nestler et al., 1993; Escriba et al., 1994; Parolaro et al.,

1993). Moreover, chronic treatment with morphine also enhances the activity ofPKA (Nestler

et al., 1988, Terwilliger et al., 1991) and increases the abundance of adenylate cyclase mRNA

(Matsuoka et al., 1994). Therefore, up-regulation of the adenylate cyclasel cyclic AMP

transduction system is currently the best-characterized potential mechanism for opiate

tolerance and dependence (Nestler, 1992; Nestler et al., 1989; Collier and Roy, 1974; Collier,

1980).

       Several recent studies have indicated that protein kinase C (PKC) is involved in

opiate tolerance and dependence (Mayer et al., 1995; Narita et al., 1994; Smart et al., 1996b).

Pretreatment with an inhibitor of serinelthreonine kinase (H7) inhibited the development of

tolerance to supraspinal antinociception induced by opiates in rats (Narita et al., 1994).

Recently, Maldonado et al., (1995) reported that the behavioral expression of naloxone-

precipitated withdrawal syndromes was strongly attenuated by the administration of H7 into

the locus coeruleus or into the periaqueductal gray matter. It has also been reported that i.c.v.

pretreatment with H7 reduced naloxone-precipitated jumping in acutely morphine-dependent

mice (Bilsky et al., 1996). Furthermore, a marked decrease (50 O/o) in the immunoreactivity of

PKC-ct and P isoforms (cytosolic and membrane-bound isoenzymes) has recently been found

in postmortem brains of heroin addicts and'in brains of morphine-dependent rats (Busques et

al., 1995). Moreover, it has been reported that both PKA and PKC were markedly activated in

chronically morphine-treated rats paakimura et al., 1997). These findings suggest that the

PKC system may also play a major role in opiate addiction.

       Many investigators have reported that hyperglycemia or elevated glucose levels can

increase diacylglycerol (DAG) levels and activate PKC in vascular tissue, cardiac tissues or

cultured cells (Craven and De Rubenis, 1989; King et al., 1990; Inoguchi et al., 1992; Tanaka

et al., 1991). Activation of the DAG-PKC cellular signal pathway is linked to vasculature

dysfunction in diabetes (Craven and De Rubertis, 1989; Wolf et al., 1990; Shiba et al., 1993).

Furthermore, in Chapter 1, I indicated that calphostin C, a protein kinase C inhibitor, reverses

the attenuation of DA]V[GO-induced antinociception in diabetic mice to the level in non-

diabetic mice. In contrast to PKC, it has been reported that the hepatic PKA activity measured

both in the absence and presence of cyclic AMP is decreased in streptozotocin-induced

diabetic animals (Khandelwal et al., 1977; Davies et al., 1995). Decreased PKA activity is
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caused by decreased phosphorylation ofthe cyclic AMP response element binding protein in

the diabetic rat (Davies et al., 1995). The induction ofphysical dependence on morphine was

significantly decreased in genetically diabetic mice (Shook et al., 1986). Although the

mechanisms of this modulation of the naloxone-precipitated jumping in the morphine-

dependent mice by diabetes are not yet clear, it is possible that functional changes in protein

kinase activity may be involved.

       Therefore, the primary aim of Experiment 2-4 was to investigate the involvement of

PKC and PKA in the modulation of naloxone-precipitated morphine withdrawal in mice.

Furthermore, I examined the involvement of PKC and PKA on the naloxoned-induced

enhancement ofNA turnover in the frontal cortex of morphine-dependent mice. Moreover, to

evaluate the modification of naloxone-precipitated jumping in morphine-dependent mice by

diabetes, the effect of protein kinase inhibitors on the expression of naloxone-precipitated

morphine withdrawal and naloxone-induced enhancement of NA turnover in the frontal

cortex were evaluated in morphine-dependent diabetic and non-diabetic mice.

       Many acute opiate effects can be partially explained by the inhibition of Ca2' ion fiux

in neuronal cells (Guerrero-Mufioz et al., 1979) and by a reduction in synaptosomal Ca2'

content (Ross et al., 1977). It has been reported that intracisternal administration of Ca2" and

Ca2' ionophores antagonizes the antinociceptive effect of morphine, a prototype pt-opioid

receptor agonist (Chapman et al., 1980; Hano et al., 1964). Conversely, Ca2' chelators (i.e.,

ethylene glycol bis(P-aminoethyl ether)N,N'-tetraacetic acid (EGTA)) or Ca2' channel

antagonists of the verapamil, diltiazem and dihydropyridine types potentiate opioid

antinociception (Ben-Sreti et al., 1983; Hoffmeister and Tettenborn, 1986). Ca2' seems to play

a basic role not only in the acute effects of opiates but also in the development of tolerance

and physical dependence. Chronic morphine administration has been shown to produce, as a

contra-adaptive reaction, an increase in Ca2' uptake in various brain preparations, resulting in

an increase ofvesicular Ca2' content (Yamamoto et al., 1978). Furthermore, it is reported that

N- and L-type Ca2' channel blockers prevent naloxone-precipitated withdrawal syndromes in

morphine-dependent mice and rats (Barrios and Baeyens, 1991; Basilico et al., 1992;

Bourreau et al., 1996). In contrast to Ca2" channel blockers, L-type Ca2" channel stimulators

increased naloxone-precipitated withdrawal signs in acute morphine-dependent mice (Barrios

and Baeyens, 1991). Thus, it is possible that influx of calcium through the L- and N-type Ca2'

channels plays an important role in the expression of naloxone-precipitated withdrawal signs

in morphine-dependent animals.
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       Previously, it has been reported that metabolic glutamate receptor antagonist

attenuates naloxone-precipitated withdrawal signs in rats given chronic subcutaneous

morphine (Fundytus and Coderre, 1994). Activation of metabolic glutamate receptors

stimulates phospholipase C which hydrolyzes phosphatidyl inostol to produce diacylglycerol

and inositol-1,4,5-trisphosphate (IP,) (Schoepp and Conn, 1993). IP, promotes the release of

Ca2' from internal stores on the endoplasmic reticulum. Furthermore, it has been reported that

during morphine withdrawal, phosphatidyl inosjtol turnover has been found be greatly

enhanced (Pellegrini-Giampietro et al., 1988). Thus, these reports suggest that enhancement

ofthe release of Ca2' from internal stores may be involved in the expression of naloxone-

precipitated withdrawal signs in morphine-dependent animals.

       It has been reported that veratrine, which contains a Na' channel activator,

veratridine, could release NA from brain synaptosomes even in a Ca2' free medium, possibly

as a result of mobilization of intracellular stores (Schoepp and Conn, 1993). Furthermore,

ryanodine induced a modest decrease in NA overflow, whereas cyclopiazonic acid, an

inhibitor of sacroplasmic reticulum Ca2'-ATPase, slightly increased NA overflow in rat vas

deferens (Bourreau, 1996). These results suggest that internal Ca2" stores could participate in

the process ofNA release. Thus, it is possible that the naloxone-induced enhancement ofNA

turnover in the frontal cortex modulated by enhancement ofintracellular [Ca2']i followed by

the release ofCa2' from intracellular Ca2' stores.

       Considerable evidenc,es suggest that calcium signaling is abnormal in cardiac

myocytes (Nobe et al., 1990), vascular smooth muscle (Kamata et al., 1988) and other tissues

(Levy et al., 1994) from diabetic animals. A recent study has shown that verapamil has a

beneficial effect on the cardiac function ofdiabetic rats without affecting glucose metabolism

or insulin secretion (Afzal et al., 1988). It has been suggested that chronic excessive

intracellular calcium overload might induce cardiac dysfunction in chronic diabetes (Heyliger

et al., 1987; Nishio et al., 1990). Moreover, it has been suggested that the diabetic state may

change [Ca2']i in neuron and various tissues (Hall et al., 1995; Kostyuk et al., 1995; Lowery et

al., 1990). Furthermore, in Chapter 1-4, changes in p- and 6-opioid receptor agonist-induced

antinociception in diabetic mice may be due to excessive intracellular calcium overload

caused by the dysfunction of calcium store function. Therefore, it is possible that the

dysfunction of calcium store function in diabetic mice may affect the naloxone-precipitated

withdrawal jumping in morphine-dependent diabetic mice. Thus, the primary aim of

Experiment 2-5 was to investigate the involvement ofintracellular caicium in the modulation
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of naloxone-precipitated morphine withdrawal in mice. Furthermore, I examined the role of

intracellular calcium on the naloxone-induced enhancement of NA turnover in the frontal

cortex of morphine-dependent mice. Moreover, to evaluate the modification of naloxone-

precipitated jumping in morphine-dependent mice by diabetes, the effects of intracellular

calcium modulators on the expression of naloxone-precipitated morphine withdrawal and

naloxone-induced enhancement of NA turnover in the frontal cortex were evaluated in

morphine-dependent diabetic and non-diabetic mice.
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Experiment 2-1: Modification of development of morphine dependence by diabetes

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted two weeks after injection

of streptozotocin or vehicle. Mice with serum glucose levels above 400 mgldl were

considered diabetic.

Chronic administration of morphine

       Morphine was injected s.c. daily at 9 a.m. and 7 p.m. According to the schedule

described by Maldonado et al. (1989), the morphine dose was increased progressively from 8

to 45 mglkg over a period of 5 days. The doses ofmorphine (mglkg) injected at 9 a.m. and 7

p.m. were: lst day (8, 15), 2nd day (20, 25), 3rd day (30, 35), 4th day (40, 45) and 5th day (45

at 9 a.m. only), respectively.

Morphine withdrawal

       Withdrawal signs were precipitated by injecting naloxone (O.3, 1, 3 and 10 mglkg, s.c.

in a volume of 10 mllkg) 2 h after the final morphine administration. After the naloxone

challenge, mice were immediately placed on a circular platform (30 cm diameter x 70 cm

height). Naloxone-precipitated withdrawal signs were recorded for 60 min according to our

previous papers (Suzuki et al., 1984, 1992a, 1992b). The number of mice which expressed

withdrawal jumping was counted for 15 min after the naloxone injection. The numbers of

mice which expressed other withdrawal signs, such as ptosis, diarrhea, and body shakes,

within 60 min after naloxone injection were also recorded. Body weight was measured before

and 15, 30, 45 and 60 min after naloxone injection.

Drugs

The drugs used in the present study were streptozotocin (Sigma Chemical Co., St.
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Louis, MO, USA), morphine hydrochloride (Sankyo Co., Tokyo Japan) and naloxone

hydrochloride (Research Biochemicals Inc., Wayland, MA, USA). All drugs were dissolved

in saline solution.

Statistical analysis

       Differences in weight loss were analyzed using one-way analysis of variance

followed by Dunnett's multiple comparison test. The ED50 values, the ED50 ratio and their

95 O/o confTidence intervals for naloxone-precipitated withdrawal signs were computed

according to Litchfield and Wilcoxon (1949) using Program 47 of the Pharmacological

Calculations system of Tallarida and Murray (1987).
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Results

Naloxone-precipitated withdrawal signs in morphine dependent diabetic mice.

      Naloxone-precipitated jumping tended to increase in a dose-related manner in

morphine-dependent non-diabetic and diabetic mice (Fig. 2-l). However, diabetes reduced the

number ofanimals respond to naloxone-precipitated jumping to half.

      Naloxene-precipitated body shakes also tended to increase in a dose-related manner

in morphine-dependent non-diabetic and diabetic mice (Fig. 2-2). Diabetes produced a

rightward shift of the dose response curve of the naloxone-precipitated body shakes in

morphine-dependent mice. Thus, diabetes reduced the number of animals respond to

naloxone-precipitated body shakes to about halÅí

      There was no significant difference in the incidence of naloxone-induced diarrhea

between morphine-dependent diabetic mice and morphine-dependent non-diabetic mice (Fig.

2-3A). The loss ofbody weight induced by naloxone increased in a dose-related manner in

morphine-dependent non-diabetic and diabetic mice. However, the naloxone-induced body

weight loss in diabetic mice was significantly greater than that in non-diabetic mice 60 min

after administration of naloxone (Fig. 2-4). Furthermore, the loss ofbody weight 60 min after

administration of naloxone (3 mglkg, s.c.) in chronically saline-treated (morphine-non-

dependent) diabetic mice (7.9 Å} 1.1 O/o, n=1O) was also significantly (PÅqO.Ol) greater than that

in chronically saline-treated (morphine-non-dependent) non-diabetic mice (2.4 Å} O.2 O/o,

n=10).

      The incidence of ptosis induced by naloxbne in morphine-dependent diabetic mice

was similar to that in morphine-dependent non-diabetic mice (Fig. 2-5B).
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Figure 2-1. Naloxone-precipitated jumping in morphine-dependent diabetic and non-
diabetic mice. Diabetic and non-diabetic mice were treated with morphine (8 - 45 mg/kg,

s.c.) twice a day for 5 days. Withdrawal jumping was observed for 15 min after
administration of naloxone (s.c.). Each point represents the number of animals
responding within 10 animals.
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Figure 2-2. Naloxone-precipitated body shakes in morphine-dependent diabetic and
non-diabetic mice. Diabetic and non-diabetic mice were treated with morphine (8 - 45
mg/kg, s.c.) twice a day for 5 days. Withdrawal body shakes was observed for 60 min
after administration of naloxone (s.c.). Each point represents the number of animals
responding within 10 animals.

- 65-



   A
  100
•
:g

.E

g
.s

..T-"U'
)

O. 50
Åé

oge
tt

S

O.1 O.3 1 3 10
Naloxone (mglkg, s.c.)

B
100

50

o
O.1

Non-diabetic mice

Diabetic mice

O.3 1 3 10
Naloxone (mgAcg, s.c.)

Figure 2-3. Naloxone-precipitated diarrhea (A) and ptosis (B) in morphine-dependent
diabetic and non-diabetic mice. Diabetic and non-diabetic mice were treated with
morphine (8 - 45 mg/kg, s.c.) twice a day for 5 days. Withdrawal signs were observed
for 60 min after administration of naloxone (s.c.). Each point represents the number of

animals responding within 10 animals.
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Figure 2-4. Body weight loss 60 min after naloxone challenge in morphine-dependent
diabetic and non-diabetic mice. Diabetic and non-diabetic mice were treated with
morphine (8 - 45 mg/kg, s.c.) twice a day for 5 days. Withdrawal was precipitated by
naloxone (s.c.). Each point represents the number of animals responding within 10
animals.
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Experiment 2-2: Effect of diabetes on the morphine-induced inhibition of

                     gastrointestinal transit.

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with the vehicle alone. The experiments were conducted 2 weeks after injection

of streptozotocin or vehicle. Mice with serum glucose levels above 400 mgldl were

considered diabetic.

Gastrointestinal transit

       Mice were fasted for 12 h before the experiments. Thirty min after s.c. administration

of morphine, or saline, a 50/o aqueous suspension of charcoal in 100/o gum arabic solution was

administered p.o. at a volume of O.1 mllmouse. Thirty minutes after charcoal administration,

the animal was killed by cervical dislocation and its small intestine was removed. The small

intestine was placed on a ruled template and both the length from the pylorus to the cecum

and the distance traveled by the charcoal were measured. The O/e transit was calculated as: 100

x (length from the pylorus to the cecum - distance traveled by the charcoal)11ength from the

pylorus to the cecum. To calculate the antitransit effect of morphine, O/o transit for each animal

was compared with the mean O/o transit in the saline-treated group according to the formula:

percent inhibition = 100 x (mean O/o transit of saline-treated mice - O/o transit of morphine-

treated mouse)lmean O/o transit ofsaline-treated control mice.

Data analysis

       Data are expressed as the mean Å} S.E. Statistical significance of differences was

assessed with a one-way analysis ofvariance (ANOVA) with repeated measures followed by a

Dunnett's test. A level of probability of O.05 or less was accepted as significant. The ED50

values and their 950/o confidence intervals (950/o CI) for the antitransit effect of morphine were

computed according to Litchfield and Wilcoxon (1949) using Program 47 of the
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Pharmacological Calculations system of Tallarida and Murray (1987).

Drugs

       Streptozotocin was purchased from Sigma Chemical Co., St. Louis, MO, USA

Morphine hydrochloride was purchased from Sankyo, Co., Tokyo, Japan. P-Funaltrexamine

and naloxonazine were synthesized by Dr. Nagase (Toray Industries, Kamakura, Japan). All

drugs were dissolved in O.90/o saline solution. B-Funaltrexamine (40 mg!kg) and naloxonazine

(35 mglkg) were injected s.c. 24 hr before testing.
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Results

       Subcutaneous injection of morphine (1-10 mglkg) dose-dependently inhibited

gastrointestinal transit in both non-diabetic and diabetic mice (Fig 2-6). The ED50 values

(950/o CI) for the antitransit effect of morphine were 1.3 (1.0 - 1.8) mg/kg in non-diabetic mice

and 2.4 (O.9 - 6.0) mglkg in diabetic mice. There was no significant difference in the

antitransit properties ofmorphine between non-diabetic and diabetic mice.

       When the mice were pretreated with B-funaltrexamine (40 mglkg, s.c.), the antitransit

effects of morphine (10 mglkg, s.c.) were significantly reduced in both non-diabetic (Fig. 2-

7A) and diabetic (Fig. 2-7B) mice. In contrast, pretreatment with the selective pi-opioid

receptor antagonist naloxonazine (35 mg/kg, s.c.) 24 hr before testing failed to antagonize the

morphine (10 mglkg, s.c.)-induced inhibition of gastrointestinal transit in both non-diabetic

and diabetic mice.
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Figure 2-5. Dose-response curves for the antigastrointestinal transit effect of morphine

in non-diabetic (open circles) and diabetic (closed circles) mice. Each point represents

the mean with S.E. from 8 animals.
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Figure 2-6. Effects of P-funaltrexamine (FNA) and naloxonazine (NXZ) on the

antitransit effeets of morphine (10 mgllcg, s.c.) in both non-diabetic (A) and diabetic (B)

mice. Mice were treated with FNA (40 mglkg, s.c.) or NXZ (35 mg/kg, s.c.) 24 h before
testing. Each column represents the mean with S.E. from 8 animals. *PÅqO.Ol vs.
morphine alone.
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Experiment 2-3: Role of noradrenergic functions in the modification of naloxone-

   precipitated withdrawal jumping in morphine-dependent mice by diabetes

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle. Mice with serum glucose levels above 400 mg!dl were considered

diabetic.

Chronic administration of morphine

      Morphine was injected s.c. daily at 9 A.M. and 7 P.M. According to the schedule

described in Chapter 2-1, the morphine dose was increased progressively from 8 to 45 mglkg

over a period of 5 days.

Morphine withdrawal

      Withdrawal signs were precipitated by injecting naloxone (O.3 mglkg, s.c. in a

volume of 10 mllkg) 2 hr after the final morphine administration. After the naloxone

challenge, mice were immediately placed in an acrylic cylinder (30 cm high, 20 cm in

diameter). The number ofjumps during each 5-min period was counted for 15 min after

naloxone injection.

Neurochemical analysis

       The concentrations of noradrenaline (NA) and 3-methoxy-4-hydroxyphenyleneglycol

(MHPG) were estimated using high-performance liquid chromatography (HPLC) with

electrochemical detection (ECD), as previously described (12). Non-dependent (chronically

saline-treated) mice (diabetic and non-diabetic) and morphine-dependent mice (diabetic and

non-diabetic) were sacrificed 5, 10 and 15 min after naloxone (O.3 mglkg, s.c.) or saline (10

mllkg, s.c.) injection, and then immersed in a dry ice-ethanol solution. The brain was quickly

- 73-



removed and the cerebral cortex was dissected on an ice-cold glass plate. The HPLC system

consisted ofa delivery pump (EP-300, Eicom Co., Japan), an analytical column (EICOMPAC,

MA-50DS, Eicom Co., Japan) and a guard column (Eicom, Japan). The electrochemical

detector (EC-1OO, Eicom, Japan) included a graphite electrode (WE-3G, Eicom, Japan).

Drugs

       The drugs used were streptozotocin (Sigma Chemical Co., St. Louis, MO), morphine

hydrochloride (Sankyo Co., Tokyo, Japan) and naloxone hydrochloride (Sigma Chemical Co.,

St. Louis, MO). All drugs were dissolved in O.90/o saline solution.

Statistical analysis

       Differences in the number ofjumps and NA turnover were analyzed using a one-way

analysis of variance followed by Dunnett's multiple comparison test. NA turnover was

determined as the NA ratio: NA ratio = MHPG (nglg ofwet tissue)fNA (nglg ofwet tissue).
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Resuks

Naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice

       The time-course of naloxone-precipitated jumping in morphine-dependent diabetic

and non-diabetic mice is shown in Figure 2-8. Subcutaneous injection of naloxone (O.3

mglkg) invariably provoked withdrawal jumping within 2 to 15 min in morphine-dependent

non-diabetic mice and reached its maximum within 5 min after naloxone injection. In

morphine-dependent diabetic mice, s.c. injection of naloxone (O.3 mglkg) also provoked

withdrawal jumping within 15 min. However, the number of naloxone-precipitated

withdrawal jumps within 5 min after naloxone challenge was significantly less in morphine-

dependent diabetic mice than in morphine-dependent non-diabetic mice (Fig. 2-8).

Effects of diabetes on naloxone-induced changes in the Ievel of NA turnover in the

       The level of NA turnover in the frontal cortex was significantly lower in diabetic

mice than in non-diabetic mice (Fig. 2-9A, B, C). Chronic treatmerrt with morphine did not

significantly modify the level of NA turnover in either non-diabetic or diabetic mice.

Furthermore, the level ofNA turnover did not significantly change after saline challenge in

either morphine-dependent non-diabetic or morphine-dependent diabetic mice. As shown in

Figure 2-9A and B, the level ofNA turnover in frontal cortex in morphine-dependent non-

diabetic mice was significantly increased 5 and 10 min after naloxone (O,3 mgfkg, s.c.)

injection, compared with that in the saline-challenged morphine-dependent group. Although

the level of NA turnover in frontal cortex in morphine-dependent diabetic mice was

significantly increased 10 min after naloxone challenge, a naloxone-induced increased in the

NA tumover was not observed 5 min after naloxone challenge (Fig. 2-9 A, B).
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Figure 2-8. Time course of naloxone precipitpted jumping in morphine-dependent
diabetic (closed circle) and non-diabetic (open circle) mice. Withdrawal was
precipitated by naloxone (O.3 mglkg, s.c,), and the number ofjumps during each 5-min
period was counted for 15 min after naloxone injection. Each point represents the mean
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Figure 2-9. Naloxone-precipitated changes in the rate of noradrenaline turnover (NA ratio) in

the cortex ofdiabetic and non-diabetic mice after chronic morphine (MOR) treatment. Mice

were sacrificed 5 (A), 10 (B) and 15 (C) min after s.c. injection of naloxone (NLX) or saline

(SAL). Each group consisted 6 mice. NA turnover was determined as the NA ratio. NA ratio

== MHPGfNA. $ PÅqO.05 vs. respective non-diabetic mice. * PÅqO.05 vs. respective saline

(SAL)--challenged chronic saline (SAL)-treated group. # PÅqO.05 vs. respective saline (SAL)-

challenged chronic morphine-treated group.
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Experiment 2-4: Modification of the expression of naloxone-precipitated

      withdrawal signs in morphine-dependent mice by diabetes:

             possible involvement of protein kinase C.

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning ofthe experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after the injection

of streptozotocin or vehicle. Mice with serum glucose levels above 400 mgldl were

considered diabetic.

Chronic administration of morphine

      Morphine was injected s.c. daily at 9 AM. and 7 P.M. According to the schedule

described in Experiment 2-1, the morphine dose was increased progressively from 8 to 45

mg/kg over a period of5 days.

Morphine withdrawal

       Withdrawal signs were precipitated by injecting naloxone (O.3 mglkg, s.c. in a

volume of 10 mllkg) 2 h after the final morphine administration. After the naloxone challenge,

mice were immediately placed in acrylic cylinder (30 cm high, 12 cm in diameter). The

number ofjumps during a 5-min period was counted for 30 min after naloxone injection.

Neurochemical analysis

       The concentrations ofnoradrenaline (NA) and 3-methoxy-4-hydroxyphenyleneglycol

(MHPG) were estimated using high-performance liquid chromatography (HPLC) with

electrochemical detection (ECD), as previously described (34). Morphine-dependent diabetic

and nond-diabetic mice were sacrificed 5 min after naloxone (O.3 mglkg, s.c.) or saline (10

mllkg, s.c,) injection, then immersed in a dry ice-cold solution. The brain was quickly

removed and the cerebral cortex was dissected on an iced-cold glass plate, The HPLC system
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consisted ofa delivery pump (EP-300, Eicom Co., Japan), an analytical column (EICOMPAC

MA-50DS, Eicom Co., Japan) and a guard column (Eicom, Co., Japan). The electrochemical

detector (EC-100, Eicom Co., Japan) included a graphite electrode (WE-•3G, Eicom Co.,

Japan).

Intracerebroventricular injection

       Intracerebroventricular (i.c.v.) administration was performed following the method

described in Chapter 1-2.

Drugs

       The drugs used were streptozotocin (Sigma Chemical Co., St. Louis, MO), morphine

hydrochloride (Sankyo Co., Tokyo, Japan), and naloxone hydrochloride (Sigma Chemical Co.,

St. Louis, MO). Calphostin C, phorbol-12,13-dibutyrate (PDBu) and (8R,9S,11S)-(-)-9-

hydroxy-9-n-hexyloxy-carbonyl-8-methyl-2,3,9,20-tetrahydro-8-,11-epoxy-IH,8H,11H-

2,7b,11a-triazadibenzo[a,g]cycloocta[cde]-trinden-1-one (KT5720) were purchased from

Calbiochem-Novabiochem International (San Diego, CA). Calphostin C and KT-5720 were

injected 1hr before the injection ofnaloxone. PDBu was injected lhr before the last injection

of morphine. The dose and schedule for calphostin C, PDBu and KT-5720 in this study were

determined as described previously (Narita et al., 1997),

Data analysis

       The data are expressed as means Å} S.E. The statistical significance of differences

between groups was assessed with Student's t-test (comparison of two groups) or an analysis

of variance (ANOVA) followed by Dunnet's test (comparison among multiple groups). NA

turnover was determined as the NA ratio: NA ratio=MHPG (ng/g ofwet tissue) / NA (ng/g of

wet tissue).
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Results

Influence of a protein kinase C (PKC) inhibitor, calphostin C, on naloxone-precipitated

withdrawal jumping

       The effect of calphostin C, a PKC inhibitor, on the number of naloxone-precipitated

withdrawal jumps in morphine--dependent diabetic and non-diabetic mice is shown in fig. 2-

10. Naloxone-precipitated withdrawal jumps were markedly attenuated by the i.c.v.

administration ofcalphostin C (20 pmol) in morphine-dependent non-diabetic mice. However,

naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice was

increased by i.c.v. pretreatment with calphostin C (20 pmol). As shown in fig. 2-11, the

number of naloxone-precipitated withdrawal jumps within 5 min after naloxone challenge

was dose-dependently attenuated by i.c.v. pretreatment with calphostin C (3-20 pmol) in

morphine-dependent non-diabetic mice. However, the number of naloxone-precipitated

withdrawal jumps in morphine-dependent diabetic mice was dose-dependently enhanced by

i.c.v. pretreatment with calphostin C (10 and 20 pmol).

Influence of a cyclic AMP-dependent protein kinase (PKA) inhibitor, KT-5720 on

naloxone-precipitated withdrawal jumping

       The effect of KT-5720, a PKA inhibitor, on the number of naloxone-precipitated

withdrawal jumps in morphine-dependent diabetic and rion-diabetic mice is shown in fig. 2-

12. In morphine-dependent non-diabetic mice, naloxone-precipitated withdrawal jumping

within 5 and 10 min after naloxone challenge was attenuated by i.c.v. pretreatment with KT-

5720. However, i.c.v. pretreatment with KT-5720 did not affect naloxone-precipitated

withdrawal jumping in morphine-dependent diabetic mice. As shown in fig. 2-13, the number

of naloxone-precipitated withdrawal jumps within 5 min after naloxone challenge in

morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice, was

dose-dependently attenuated by i.c.v. pretreatment with KT5720 (1O and 20 pmol).

Influence of a PKC activator, phorbol-12,13-dibutyrate (PDBu), on

naloxone-precipitated withdrawal jumping in morphine-dependent

diabetic mice

the expression of

diabetic and non-

The effect of phorbol-12,13-dibutyrate (PDBu), a PKC activator, on the number of
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naloxone-precipitated withdrawal jumps in morphine-dependent diabetic and non-diabetic

mice is shown in fig. 2-14. In morphine-dependent non-diabetic mice, but not in morphine-

dependent diabetic mice, naloxone-precipitated withdrawal jumping within 5 min after

naloxone challenge was attenuated by i.c.v. pretreatment with PDBu (10 pmol). As shown in

fig. 2-15, i.c.v. pretreatment with PDBu (3 and 10 pmol) 3 h before naloxone injection dose-

dependently attenuated naloxone-precipitated withdrawal jumping within 5 min after

naloxone injection. However, i.c.v. pretreatment with PDBu (3 and 10 pmol) had no

significant effect on naloxone-precipitated withdrawal jumping within 5 min after naloxone

injection in morphine-dependent diabetic mice.

Influences of protein kinase C and A modulator on

llevel of NA turnover in the frontal cortex

naloxone-induced changes in the

       The level ofNA turnover in the frontal cortex was significantly lower in morphine-

dependent diabetic mice than in morphine-dependent non-diabetic mice (Fig. 2-16A and B).

The level of NA turnover in frontal cortex in morphine-dependent non-diabetic mice was

significantly increased 5 min after naloxone challenge, compared with that in the saline-

challenged morphine-dependent non-diabetic mice (Fig 2-16A and B). However, a naloxone-

induced increase in the NA turnover was not observed 5 min after naloxone challenge in

morphine-dependent diabetic mice (Fig. 2-16A and B). As shown in fig. 2-16A, a naloxone-

induced increased in the NA turnover was attenuated by pretreatment with calphostin C (20

pmol, i.c.v.) and KT5720 (20 pmol, i.c.v.) in morphine-dependent non-diabetic mice (Fig. 2-

16A). In morphine-dependent diabetic mice, i.c.v. pretreatment with neither calphostin C nor

KT5720 affected the NA turnover in naloxone-challenged morphine-dependent diabetic mice

(Fig. 2-16A). I.c.v. pretreatment with PDBu (10 pmol) 1 h before last injection of morphine

attenuated a naloxone-induced increase in NA turnover in the frontal cortex in morphine-

dependent non-•diabetic mice (Fig. 2-16B). However, i.c.v. pretreatment with PDBu (10 pmol)

had no significant effect on the level of NA turnover in the frontal cortex in naloxone-

challenged morphine-dependent diabetic mice (Fig 2-16B).
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Figure 2-9. The effect of a protein kinase C inhibitor, calphostin C, on the time course

of the number of naloxone-precipitated withdrawal jumps in morphine-dependent
diabetic and non-diabetic mice. Calphostin C (20 pmol) and vehicle were injected i.c.v.
Ih before the administration of naloxone (O.3 mglkg, s.c.). Each point represents the

mean Å} S.E. of 9•-10 mice. *PÅqO.05 versus non-diabetic mice. #PÅqO.05 versus the

respective vehicle-treated groups.

- 82-



50

40

g
.H30

e
ts

C20
E

10

o

Saline 3 10 20 Saline 10 20

Calphostin C

(pmol, i.c.v.)

Calphostin C

(pmol, i.c.v.)

Non-diabetic mice Diabetic mice

Figure 2-10. The dose-related effect ofa protein kinase C inhibitor, calphostin C, on the

number of naloxone-precipitated withdrawal jumps within 5 min after naloxone
challenge in morphine-dependent diabetic and non-diabetic mice. Calphostin C (3 pmol,
10 pmol and 20 pmol) and vehicle were injected i.c.v. Ih before the administration of
naloxone (O.3 mglkg, s.c.). Each point represents the mean Å} S.E. of 9-10 mice. "PÅqO.05

versus non-diabetic mice. #PÅqO.05 versus the respective vehicle-treated groups.
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Figure 2-11. The effect of a protein kinase A inhibitor, KT-5720, on the time course of
the number of naloxone-precipitated withdrawal jumps in morphine-dependent diabetic
and non-diabetic mice. KT-5720 (20 pmol) and vehicle were injected i.c.v. Ih before the
administration of naloxone (O.3 mglkg, s.c.). Each point represents the mean Å} S.E. of

10-12 mice. "PÅqO.05 versus non-diabetic mice. #PÅqO.05 versus the respective vehicle-
treated groups.
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Figure 2-12. The effect of a protein kinase A inhibitor, KT-5720, on the number of
naloxone-precipitated withdrawal jumps in morphine-dependent diabetic and non-
diabetic mice. KT-5720 (10 and 20 pmol) and vehicle were injected i.c.v. Ih before the
administration of naloxone (O.3 mglkg, s.c.). Each point represents the mean Å} S.E. of

10-12 mice. "PÅqO.05 versus non-diabetic mice. #PÅqO.05 versus the respective vehicle-
treated groups.
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Figure 2-13. The effect of a protein kinase C activator, phorbol-12,13-dibutyrate
(PDBu), on the time course of the number of naloxone-precipitated withdrawal jumps in
morphine-dependent diabetic and non-diabetic mice. PDBu (10 pmol) and vehicle were
injected i.c.v. 1 h before the last injection of morphine (45 mg/kg, s.c.). Each point
represents the mean Å} S.E. of 10 mice. 'PÅqO.05 versus non-diabetic mice. #PÅqO.05

versus the respective vehicle-treated groups.
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Figure 2-14. The dose-related effect of a protein kinase C activator, phorbol-12,13-
dibutyrate (PDBu), on the number of naloxone-precipitated withdrawal jumps within 5
min after naloxone challenge in morphine-dependent diabetic and non-diabetic mice.
PDBu (3 pmol and 10 pmol) and vehicle were injected i.c.v. 1 h before the last injection

of morphine (45 mglkg, s.c.). Each point represents the mean Å} S.E. of 10 mice.

"PÅqO.05 versus non-diabetic mice. #PÅqO.05 versus the respective vehicle-treated

groups.
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Figure 2-15. The effects of protein kinase C and A inhibitor (A) and protein kinase C

activator (B) on a naloxone-induced increase of NA turnover in frontal cortex in
morphine-dependent diabetic and non-diabetic mice. Calphostin C (CP; 20 pmol, ic.v.)
and KT5720 (KT; 20 pmol, i.c.v.) and vehicle were injected 1 h before the last injection

of naloxone (O.3 mglkg, s.c.) (A). PDBu (10 pmol) and vehicle were injected i.c.v. 1 h
before the last injection of morphine (45 mglkg, s.c.). Each column represents the mean

with S.E. of 5-•10 mice. 'PÅqO.05 versus saline-challenged morphine-dependent non-
diabetic mice. #PÅqO.05 versus naloxone challenged chronic morphine-treated group.
$PÅqO.05 versus respective non-diabetic mice.
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  Experiment 2-5: Role of intracellular calcium on the modulation of

naloxon"precipitated withdrawal jumping in morphine-dependent mice

                          by diabetes.

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning ofthe experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after the injection

of streptozotocin or vehicle. Mice with serum glucose levels above 400 mgldl were

considered diabetic.

Chronic administration of morphine

       Morphine was injected s.c. daily at

described in Experiment 2-1, the morphine

mglkg over a period of5 days.

9 A.M

dose was

and 7 PM.

 increased

According to the

progressively from

schedule

 8 to 45

Morphine withdrawal

       Withdrawal signs were precipitated by injecting naloxone (O.3 mglkg, s.c. in a

volume of 1O mllkg) 2 h after the final morphine administration. After the naloxone challenge,

mice were immediately placed in acrylic cylinder (30 cm high, 12 cm in diameter). The

number ofjumps during a 5-min period was counted for 30 min after naloxone injection.

Neurochemical analysis

       The concentrations of noradrenaline (NA) and 3-methoxy-4-hydroxyphenyleneglycol

(MHPG) were estimated using high-performance liquid chromatography (HPLC) with

electrochemical detection (ECD), as previously described (34). Morphine-dependent diabetic

and non-diabetic mice were sacrificed 5 min after naloxone (O.3 mglkg, s.c.) or saline (10

mllkg, s.c.) injection, then immersed in a dry ice-cold solution. The brain was quickly

removed and the cerebral cortex was dissected on an ice-cold glass plate. The HPLC system
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consisted ofa delivery pump (EP-300, Eicom Co., Japan), an analytical column (EICOMPAC

MA-50DS, Eicom Co., Japan) and a guard column (Eicom, Co., Japan). The electrochemical

detector (EC-100, Eicom Co., Japan) included a graphite electrode (WE-3G, Eicom Co.,

Japan).

Intracerebroventricular inj ection

       Intracerebroventricular (i.d.v.)

described in Experiment 1-2.

administration was performed following the method

Drugs

       The drugs used were streptozotocin (Sigma Chemical Co., St. Louis, MO), morphine

hydrochloride (Sankyo Co., Tokyo, Japan), and naloxone hydrochloride (Sigma Chemical Co.,

St. Louis, MO). Ryanodine was purchased from Calbiochem-Novabiochem International (San

Diego, CA). Thapsigargin was purchased from Research Biochemical International (Natic,

MA). Ryanodine was injected 15 min before the injection of naloxone. Thapsigargin was

injected lh before the injection of naloxone. The dose and schedule for ryanodine and

thapsigargin in this study were determined as described previously (Smith and Stevens, 1995).

Data analysis

       The data are expressed as means Å} S.E. The statistical significance of differences

between groups was assessed with Student's t-test (comparison of two groups) or an analysis

ofvariance (ANOVA) followed by Dunnet's test (comparison among multiple groups). NA

turnover was determined as the NA ratio: NA ratio == MHPG (nglg ofwet tissue) 1 NA (nglg

ofwet tissue).
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Results

Influence ofa ryanodine on naloxone-precipitated withdrawal jumping

       Subcutaneous injection of naloxone (O.3 mg/kg) invariably provoked withdrawal

jumping within 2 to 15 min in morphine-dependent non-diabetic mice and reached its

maximum within 5 min after naloxone injection (Fig. 2-17A, 2-18A). In morphine-dependent

diabetic mice, s.c. injeetion of naloxone (O.3 mglkg) also provoked withdrawal jumping

within 15 min. However, the number ofnaloxone-precipitated withdrawal jumps within 5 min

after naloxone challenge was significantly less in morphine-dependent diabetic mice than in

morphine-dependent non-diabetic mice (Fig. 2-18A, 1-18B). The effects of ryanodine on the

number of naloxone-precipitated withdrawal jumps in morphine-dependent diabetic and non-

diabetic mice are shown in fig. 2-17. Naloxone-precipitated withdrawal jumping was

markedly attenuated by the i.c.v. administration of ryanodine (1.0 nmol) in morphine-

dependent non-diabetic mice. However, naloxone-precipitated withdrawal jumping in

morphine--dependent diabetic.mice was not affected by i.c.v. pretreatment with ryanodine (1.0

nmol). As shown in fig. 2-17B, the number ofnaloxone-precipitated withdrawal jumps within

5 min after naloxone challenge was dose-dependently attenuated by i.c.v. pretreatment with

ryanodine (O.3 and 1.0 nmol) in morphine-dependent non-diabetic mice. However, the

number ofnaloxone-precipitated withdrawal jumps in morphine-dependent diabetic mice was

not affected by i.c.v. pretreatment with ryanodine (O.3 and 1.0 nmol).

Infiuence ofthapsigargin on naloxone-precipitated withdrawal jumping

       The effect of thapsigargin on the number of naloxone-precipitated withdrawal jumps

in morphine-dependent diabetic and non-diabetic mice is shown in fig. 2-18. In morphine-

dependent non-diabetic mice, but not in morphine-dependent diabetic mice, naloxone-

precipitated withdrawal jumping within 5 min after naloxone challenge was attenuated by

i.c.v. pretreatment with thapsigargin (1.0 nmol). As shown in fig. 2-18B, i.c.v. pretreatment

with thapsigargin (O.3 and 1.0 nmol) 1 h before naloxone injection dose-dependently

increased naloxone-precipitated withdrawal jumps within 5 min after naloxone injection.

However, i.c.v. pretreatment with thapsigargin (O.3 and 1.0 nmol) had no significant effect on

the number of naloxone-precipitated withdrawal jumping within 5 min after naloxone
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injection in morphine-dependent diabetic mice.

Influences of ryanodine and thapsigargin on naEoxone-induced changes

NA turnover in the frontal cortex

in the level of

       The level ofNA turnover in the frontal cortex was significantly lower in morphine-

dependent diabetic mice than in morphine-dependent non-diabetic mice (Fig. 2-19A and B).

The level ofNA turnover in the frontal cortex in morphine-dependent non-diabetic mice was

significantly increased 5 min after naloxone challenge, compared with that in the saline-

challenged morphine-dependent non-diabetic mice (Fig 2-19A and B). However, a naloxone-

induced increase in the NA turnover was not observed 5 min after naloxone challenge in

morphine-dependent diabetic mice (Fig. 2-19A and B). As shown in fig. 2-19A, a naloxone-

induced increase in the NA turnover was attenuated by pretreatment with ryanodine (1.0 nmol,

i.c.v.) in morphine-dependent non-diabetic mice (Fig. 2-19A). I.c.v. pretreatment with

ryanodine did not affect the NA turnover in naloxone-challenged morphine-dependent

diabetic mice (Fig. 2-19A). I.c.v. pretreatment with thapsigargin (1.0 nmol) 1 h before the

injection of naloxone increased a naloxone-induced increase in NA turnover in the frontal

cortex in morphine-dependent non-diabetic mice (Fig. 2-19B). However, this enhancement of

the naloxone-induced increase in NA turnover was not statistically significant.
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Figure 2-16. (A) The effect of ryanodine on the time course of the number of naloxone-

precipitated withdrawal jumps in morphine-dependent diabetic and non-diabetic mice.
(B) The dose-related effect of ryanodine (O.3 and 1.0 nmol) on the number of naloxone-

precipitated withdrawal jumps within 5 min after naloxone challenge in morphine-
dependent diabetic and non-diabetic mice. Ryanodine (O.3 or 1.0 nmol) and saline were
injected 15 min before the administration of naloxone (O.3 mglkg, s.c.). Each point or
column represents the mean Å} S.E. of 9-10 mice. *PÅqO.05 versus non-diabetic mice.

#PÅqO.05 versus the respective saline-treated groups.
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Figure 2-17. (A) The effect of thapsigargin on the time course of the number of
naloxone-precipitated withdrawal jumps in morphine-dependent diabetic and non-
diabetic mice. (B) The dose-related effect of thapsigargin on the number of naloxone-
precipitated withdrawal jumps within 5 min after naloxone challenge in morphine-
dependent diabetic and non-diabetic mice. Thapsigargin (O.3 and 1.0 nmol) and vehicle
were injected i.c.v. Ih before the administration of naloxone (O.3 mglkg, s.c.). Each
point or column represents the mean Å} S.E. of 9-10 mice. *PÅqO.05 versus non-diabetic

mice. #PÅqO.05 versus the respective vehicle-treated groups.
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Figure 2-18. The effects of ryanodine (A) and thapsigargin (B) on naloxone-induced
increase of NA turnover in the frontal cortex in morphine-dependent diabetic and non-
diabetic mice. Ryanodine (Ryn; 1.0 nmol) and saline were injected 15 min before the
administration of naloxone (O.3 mg/kg, s.c.) (A). Thapsigargin (1.0 nmol) and vehicle

were injected i.c.v. 1 h before the administration of naloxone (O.3 mglkg, s.c.). Each
column represents the mean with S.E. of 4-5 mice. *PÅqO.05 versus saline-challenged
morphine-dependent non-diabetic mice. #PÅqO.05 versus naloxone challenged chronic
morphine-treated group. $PÅqO.05 versus respective non-bdiabetic rnice.
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Discussion

       The results of"Experiment 2-1" show that morphine-dependent diabetic mice exhibit

a differential sensitivity to naloxone challenge with regard to body weight loss, and jumping

and body shakes. Indeed, the naloxone-induced loss of body weight is much greater in

diabetic mice than in non-diabetic mice, whereas naloxone-induced jumping and body shakes

are relatively less in diabetic mice. Suzuki et al. (1992a) previously demonstrated that

naloxone-precipitated jumping and body shakes are much less in CXBK mice than in

C57BL16 mice. However, they found no significant difference in naloxone-precipitated

diarrhea, body weight loss and ptosis between CXBK and C57BL16 mice (Suzuki et al.,

1992a). Moskowitz and Goodman (1985) found that the CXBK mouse is deficient in p-opioid

receptors, whereas the 6-opioid receptor population is less consistently altered. Furthermore,

they demonstrated that the CXBK mouse was particularly deficient in pi-opioid receptor

binding (Moskowitz and Goodman, 1985). Based on these results, Suzuki et al. (1992a)

previously suggested that naloxone-precipitated jumping and body shakes in morphine-

dependent mice may be mediated by pt,-opioid receptors, but that diarrhea, body weight loss

and ptosis appeared to be mediated by p,- andlor 6-opioid receptors. Furthermore, Kamei et al.

(1994a) proposed that the diabetic mouse is selectively deficient in pi-opioid receptors, but

not in Ii2-opioid receptors. Thus, the present and previous findings support the hypothesis that

naloxone-precipitated jumping and body shakes in morphine-dependent mice may be

mediated by p,-opioid receptors.

       Cowan et al. (1988) reported that rats treated with p- but not 6-opioid agonists

showed ptosis after naloxone injection. Moreover, Suzuki et al. (1992a) reported that there

was no difference in the incidence of naloxone-precipitated ptosis between morphine-

dependent CXBK and C57BL/6 mice. Thus, they have concluded that naloxone-precipitated

ptosis may be mediated by p2-, but not pi- or 6-opioid receptors. In the present study,

naloxone-precipitated ptosis in diabetic mice was not different from that in non-diabetic mice,

suggesting that p2-opioid receptor--mediated function in the development of physical

dependence on morphine is not altered in diabetic mice, as compared to that in non-diabetic

mice.

       In the present study, although the incidence of naloxone-precipitated diarrhea in

morphine-dependent diabetic mice was similar to that in morphine-dependent non-diabetic

mice, the amount of naloxone-precipitated body weight loss in morphine-dependent diabetic
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mice was significantly greater than that in morphine-dependent non-diabetic mice. This result

is not consistent with previous result using CXBK mice (Suzuki et al., 1992a). The amount of

naloxone-precipitated body weight loss in morphine-dependent CXBK mice was similar to

that in morphine-dependent C57BL16 mice, as was the incidence of naloxone-precipitated

diarrhea (Suzuki et al., 1992a). Heyman et al. (1988) reported that morphine and DA]NilGO

mediated their antitransit effects at a naloxonazine-insensitive site, referred to as p2-opioid

receptor. Based on these results, we suggested that naloxone-precipitated diarrhea and body

weight loss appeared to be mediated by p,- andfor 6-opioid receptors (Suzuki et al., 1992a).

As mentioned above, it is suggested that pt,-opioid receptor--mediated function in the

development ofphysical dependence on morphine is not altered in diabetic mice, as compared

to that in non-diabetic mice. Furthermore, Kamei et al. (1992a, 1994b) previously suggested

that supraspinal 6-opioid receptors are up-regulated in diabetic mice, since the antinociceptive

effect of i.c.v. [D-Pen2'5]enkephalin (DPDPE), a selective 6-opioid receptor agonist, in

diabetic mice was significantly greater than that in non-diabetic mice. Moreover, Miyamoto et

al. (1993a, 1993b) recently suggested that 6-opioid receptors were involved in the

development of morphine dependence. Thus, naloxone-precipitated body weight loss may be

mediated by 6-opioid receptors. However, it is well-known that naloxone-precipitated body

weight loss in morphine-dependent animals may be primarily due to naloxone-precipitated

diarrhea (Goode, 1971). It has been assumed that the diarrhea which results from morphine

withdrawal is caused by an increase in gastrointestinal motility (Kaymakcalan and Temelli,

1964; Collier et al., 1972; Brown et al., 1988). In this regard, accumulating evidence suggests

that autonomic neuropathy is a common complication in diabetic patients. In fact, it has been

reported that diarrhea is common in patients with diabetes mellitus, suggesting that diabetes is

associated with dysfunction ofthe autonomic nervous system ofthe gut (Hosking et al., 1978).

In the present study, furthermore, I observed that the amount of naloxone-precipitated body

weight loss in chronically saline-treated (non-dependent) diabetic mice was also significantly

greater than that in chronically saline-treated (non-dependent) non-diabetic mice. Furthermore,

in Chapter 2-2, I demonstrated that there was no significant difference between the ED50

values of the naloxonazine-insensitive antitransit effect of morphine in non-diabetic and

diabetic mice. Namely, diabetes failed to alter the p,-opioid receptor-mediated antitransit

effect ofmorphine. Thus, it is also possible that the potent naloxone-precipitated body weight

loss in morphine-dependent diabetic mice, as compared to that in morphine-dependent non-

diabetic mice, may be due to the intensity ofthe increase in gastrointestinal motility caused by
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dysfunction ofthe autonomic nervous system ofthe gut.

       In conclusion, the present results suggest that pti-opioid receptor•-mediated function

in the development ofphysical dependence on morphine in diabetic mice is significantly less

than that in non-diabetic mice, and support our hypothesis that mice with diabetes are

selectively hypo-responsive to pi-opioid receptor-mediated pharmacological action, but not to

that which is mediated by p,-opioid receptors.

       In Experiment 2-2, I indicated that the antitransit effect of s.c. morphine is

significantly antagonized by pretreatment with B-funaltrexamine, but not by pretreatment with

naloxonazine. These results are consistent with the findings ofHeyman et al. (1988) and Pick

et al. (1991), and suggest that pt2-opioid receptors may play an important role in the antitransit

effect of morphine.

       The results of Experiment 2-2 also demonstrated that the dose-dependent antitransit

effect of morphine can be observed not only in non-diabetic, but also in diabetic mice.

Furthermore, there was no significant difference between the ED50 values of the antitransit

effect of morphine in non-diabetic and diabetic mice. The antitransit effect of s.c. morphine in

diabetic mice is also significantly antagonized by pretreatment with P-funaltrexamine, but not

by pretreatment with naloxonazine. Moreover, there is no significant difference in the effect

ofB-funaltrexamine on morphine-induced antitransit effect between diabetic and non-diabetic

mice. Kamei et al. (1992 eq b, 1994a) previously reported that diabetic mice are selectively

hypotesponsive to pti-opioid receptor-mediated pharmacological actions, i.e. supraspinal

antinociception, but not to those mediated by p,-opioid receptors, i.e. spinal antinociception

(Kamei et al, 1994a) and the antitussive effect (Kamei et al, 1994c). This hypothesis is further

supported by the present results.

       In the present study, the antitransit effect of morphine was not completely

antagonized by pretreatment with B-funaltrexamine. In this regard, Porreca and Burks (1983)

suggested that 6-opioid receptors may mediate the antigastrointestinal transit effects of

opioids at the spinal cord level, since i.t. administration of6-opioid receptor agonists such as

D-Ala2-D-Leu5-enkephalin, D-See-Leu-enkephalin-(Thr6) and D-Pen2-L-Cys5-enkephalin,

consistently inhibited gastrointestinal transit. These results suggest that the antitransit effects

of opioids are mediated by both pt- and 6••opioid receptors. Kamei et al. (1992b) previously

reported that there was no significant difference in the supraspinal and spinal 6-opioid

receptor-mediated antinociceptive effects between non-diabetic and diabetic mice. Thus, it

seems likely that spinal 6-opioid receptors may have an important role in the antitransit effect
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of morphine in both non-diabetic and diabetic mice. This possibility appears to provide a

plausible explanation for the partial antagonism of P-funaltrexamine on the antitransit effect

ofmorphine.

       In conclusion, the results from Experiment 2-2 demonstrated that diabetes failed to

alter the l.i?-opioid receptor-mediated antitransit effect of morphine. This conclusion supports

the hypothesis that diabetic mice are selectively hyporesponsive to pi-opioid receptor-

mediated pharmacological action, but not to that which is mediated by p2-opioid receptors.

       In Experiment 2-3, I indicated that morphine-dependent diabetic mice jump less

within 5 min after naloxone challenge than morphine-dependent non-diabetic mice. This

result supports the previous suggestion that morphine-dependent diabetic mice exhibit a less

sensitivity to naloxone challenge with regard to withdrawal jumping.

       In the present study, I observed a significant increase in NA turnover in the frontal

cortex in morphine-dependent non-diabetic mice 5 min after naloxone challenge, when the

incidence ofwithdrawal jumping was at its peak. The central noradrenergic system has been

hypothesized to be involved in morphine dependence and withdrawal (Redmond and Krysatal,

1984). In a microinjection study using naltrexone, it was shown that the LC region is the most

sensitive site for the expression ofmorphine withdrawal signs (Maldonado et al., 1992). It has

been reported that the firing rate of noradrenergic neurons in the LC, which is a cluster of

NA-containing cell bodies in the brain, increases during naloxone-precipitated withdrawal

from morphine (Aghajanian, 1978). Furthermore, it has been reported that treatment with

DSP-4, a noradrenergic neurotoxin that selectively damages the NA-containing nerve endings

that project from the LC, before the naloxone challenge suppresses the expression of

morphine withdrawal signs, including jumping and "wet dog" shakes (Funada et al., 1994).

Moreover, in a biochemical study, the level of 3-methoxy-4-hydroxyphenylethyleneglycol

(MHPG), the major metabolite of NA, in the cerebral cortex which projects from LC,

increased following naloxone challenge in morphine-dependent rats and mice (Crawley et al.,

1979; Funada et al., 1994). These reports and the present study strongly suggest that LC

noradrenergic neurons are involved in morphine dependence andlor withdrawal.

       In the present study, I found that NA turnover in the frontal cortex was significantly

lower in chronically saline-treated (non-dependent) diabetic mice than in chronically salineny-

treated (non-dependent) non-diabetic mice. Thus, it is likely that noradrenergic

neurotransmission in the frontal cortex, especially in the LC, may be reduced in diabetic mice,

compared with that in non-diabetic mice. Furthermore, the results of our experiment suggest
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an association between noradrenergic neurotransmission in the frontal cortex and the

incidence of naloxone-precipitated withdrawal jumping. Indeed, NA turnover in the frontal

cortex had not changed at 5 min after naloxone challenge in morphine-dependent diabetic

mice, although the incidence of naloxone-induced jumping was significantly lower in

morphine-dependent mice than in morphine-dependent non-diabetic mice at this point. In

contrast, the NA turnover in frontal cortex was significantly increased at 10 min after

naloxone challenge in morphine-dependent mice, when the incidence of naloxone-induced

jumping was increased to the levels that were observed in morphine-dependent non-diabetic

mice.

       In conclusion, the findings of Experiment 2-3 raise possibility that the reduction in

noradrenergic neurotransmission in the LC noradrenergic system may be associated with the

reduction in the incidence of naloxone-precipitated withdrawal jumping at 5 min after

naloxone challenge in morphine-•dependent diabetic mice, as compared with that in non-

diabetic mice.

       In Experiment 2-4, I found that the i.c.v. administration of a PKC inhibitor,

calphostin C, attenuated the expression of naloxone-precipitated withdrawal jumping in

morphine-dependent non-diabetic mice. Moreover, the expression of naloxone-precipitated

withdrawal jumping was also attenuated by i.c.v. pretreatment with the PKA inhibitor KT-

5720 in morphine-dependent non-diabetic mice. Furthermore, naloxone-induced increase in

NA turnover in the frontal cortex in morphine-dependent non-diabetic mice is attenuated by

i.c.v. pretreatment with either calphostin C and KT5720 1 hr before naloxone challenge. Many

investigators indicated that chronic morphine administration increases levels of adenylyl

cyclase and PKA in the LC (Nestler et al., 1992; Duman e al., 1988). These adaptations have

been shown to increase the electrical excitability of LC neurons (Alreja and Aghajanian,

1991; Kogan et al., 1992; Shiekhattar and Aston-Jonse, 1993) and appear to contribute to

activation ofthe LC seen on precipitation ofwithdrawal (Kogan et al., 1992; Rasmmussen et

               -dal., 1990). Thus, it is also possible that the attenuation of naloxone-induced increase in the

level of NA turnover in the frontal cortex in morphine-dependent non-diabetic mice is

produced by the inhibition of PKA by KT5720 in LC. Furthermore, several recent studies

have indicated that PKC activity is involved in opiate tolerance and dependence (Collier.

1980; Mayer et al., 1995). It was reported that chronic treatment with morphine induced a

modest, naloxone-sensitive, increase in cytosolic, but not membrane, PKC activity in rat brain

(ponslmedulla but not cortex and midbrain regions)(Narita et al., 1994). Furthermore, H-7
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have been inhibited the withdrawal signs and the increase in glutamate levels, which induce

NA release in the frontal cortex, in the LC of opioid-dependent animal (Tokuyama et al.,

1997). Thus, it is possible that the activation of PKC, as well as PKA, in the LC may be

modulate naloxone-induced increase of NA turnover in the frontal cortex and the naloxone-

precipitated withdrawal jumping in morphine-dependent rodents.

       In the present study, i.c.v. pretreatment with PDBu 1 hr before the last injection of

morphine attenuated increase in NA turnover in the frontal cortex and the naloxone-

precipitated withdrawal jumping in morphined-dependent non-diabetic mice. The mechanisms

which underlie the attenuation of naloxone-induced increase in NA turnover in the frontal

cortex and the expression of naloxone-precipitated withdrawal jumping in morphine-

dependent non-diabetic mice by PKC activator are unclear. It was reported that the abundance

of p-opioid receptors was not significantly altered in morphine-dependent human and rats

(Garcia-Sevilla et al., 1997). The phosphorylation ofreceptdrs by PKC has been proposed to

be a possible mechanism for the development of desensitization (Shearman et al., 1989). It is

reported that activation of PKC by phorbol ester potentiates the desensitization of p-opioid

receptor induced K' current (Chen and Yu, 1994). We recently reported that the activation of

PKC by PDBu leads to the desensitization of p-opioid receptor-mediated antinociception

(Narita et al., 1997). In view of these results, present data suggests that attenuation of

naloxone-induced increase in NA turnover in the frontal cortex and the expression of

naloxone-precipitated withdrawal jumping by the activation of PKC may be due to the

desensitization of pt-opioid receptor. However, it was reported that long term treatment with

phorbol ester has desensitized or downregulated PKC in mouse neuroblastoma NIE-15 cells,

when the cells were treated with 100 nM PDBu for 24 hr (Lai and El-Fakahany, 1988). In the

present study, the effect of PDBu on naloxone-precipitated withdrawal jumping in morphine

dependent non-diabetic mice exerts the same effect as the PKC inhibitor. Therefore, it is also

possible that the effect of PDBu on naloxone-induced increase in NA turnover in the frontal

cortex and naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic

mice may be due to the desensitization or down-regulation of PKC. Because desensitization

ofPKC by phorbol ester requires a long-term treatment, it is unlikely that the desensitization

of PKC by phorbol ester produce the attenuation of naloxone-induced increase in NA

turnover in the frontal cortex and naloxone-precipitated withdrawal jumping in morphine-

dependent non-diabetic mice. Therefore, it is most likely that the attenuation of naloxone-

induced increase in NA turnover in the frontal cortex and naloxone-precipitated withdrawal
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jumping in morphine-dependent non-diabetic mice may be due to the desensitization of p-

opioid receptors induced by activation ofPKC.

       In Experiment 2-4, I observed that morphine-dependent diabetic mice jump less

within 5 min after naloxone challenge than morphine-dependent non-diabetic mice.

Furthermore, NA turnover in the frontal cortex was not affected by naloxone challenge.

Moreover, the expression of naloxone-precipitated withdrawal jumping in morphine-

dependent diabetic mice was not attenuated by i.c.v. pretreatment with the protein kinase A

inhibitor KT-5720. There was a significant increase in the number of naloxone-precipitated

withdrawal jumps within 5 min after naloxone challenge in morphine-dependent diabetic

mice by i.c.v. pretreatment with calphostin C. Furthermore, I observed that pretreatment with

a PKC activator, phorbol-12,13--dibutyrate (PDBu), 1 h before morphine injection attenuated

the naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice, but

not in morphine-dependent diabetic mice. This result suggests that the activation of PKC by

PDBu before morphine injection inhibits the expression of naloxone-precipitated withdrawal

jumping in morphine--dependent non-diabetic mice. Thus, it is likely that the attenuation of

naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice may be due

to the increased activity ofPKC, since i.c.v. pretreatment with calphostin C increased, while

i.c.v. pretreatment with PDBu did not affect, the number of naloxone-precipitated withdrawal

jumps in morphine-dependent diabetic mice. In the present study, pretreatment with KT5720

did not affect the NA turnover in naloxone-challenged morphine-dependent diabetic mice.

This result is consisted with behavioral data. Although pretreatment with calphostin C

increased the naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice,

pretreatment with calphostin C did not affect the NA turnover in naloxone-challenged

morphine-dependent diabetic mice. This result contravenes the hypothesis that naloxone-

precipitated withdrawal jumping is produced by the increase of NA turnover in the frontal

cortex. There is accumulating evidence that the activation ofPKC regulates several cellular

functions through the phosphorylation ofproteins, including some receptors, whose function

is then down-regulated (Moran and Dascal, 1989). It has been reported that the activation of

PKC by phorbol esters induces to decrease the affinity andlor responsiveness of ct- and P-

adrenergic receptors (Corvera and Garcia-Sainz, 1984; Sibley et al., 1984). Many

investigators have reported that hyperglycemia or elevated glucose levels can increase

diacylglycerol (DAG) levels and activate PKC in vascular tissue, cardiac tissues or cultured

cells (Craven and De Rubenis, 1989; King et al., 1990; Inoguchi et al,, 1992; Tanaka et al.,
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l991). Furthermore, in Chapter 1, I indicated that calphostin C, a protein kinase C inhibitor,

reverses the attenuation ofDAMoo-induced antinociception in diabetic mice to the level in

non-diabetie mice. Thus, it is expected that activation ofPKC in diabetic mice may induce the

phosphorylation ofseveral proteins, including some receptors, in the brain. In view ofthese

data and present data, it is possible that the enhancement of naloxone-precipitated withdrawal

jumping in calphostin C-treated morphine-dependent diabetic mice may be result from the

inhibition of phosphorylation of several receptors and proteins, including oc- and B-adrenergic

receptors, but not from the enhancement of NA release, induced by PKC. However, further

detail studies are necessary before this possibility can be established with greater certainty.

       In conclusion, the results of Experiment 2-t4 indicate that both the brain PKC and

PKA systems may play a major role in morphine dependence. Elucidating the possible in vivo

cross-communication between these regulatory enzymes may be important for a better

understanding of the cellular and molecular bases of morphine addiction. Moreover, the

functional up-regulation in intracellular PKC systems may be partly associated with the

reduction in the incidence ofnaloxone-precipitated withdrawal jumping 5 min after naloxone

challenge in morphine-dependent diabetic mice.

       In Experiment 2-5, pretreatment with ryanodine attenuated naloxone-precipitated

withdrawal jumping in morphine-dependent non-diabetic mice, Furthermore, naloxone-

induced enhancement of noradrenaline (NA) turnover in morphine-dependent non-diabetic

 mice was also attenuated by pretreatment with ryanodine. It has been reported that ryanodine

 blocks the Ca2'/caffeine sensitive microsomal pools, which are involved in the phenomenon

 ofCa2'-induced Ca2' release (McPherson et al., 1991). Furthermore, it has been reported that

 ryanodine reduces the rate at which [Ca2'], increases with Ca2' entry (Friel and Tsien, 1992).

 Furthermore, it is reported that ryanodine reduces the NA overflow (Bourreau, 1996). Thus, it

 is likely that the attenuation of naloxone-precipitated withdrawal jumping and NA turnover in

 morphine-dependent non-diabetic mice caused by ryanodine may be due to a decrease in

 [Ca2'],. In contrast to ryanodine, thapsigargin enhanced the naloxone-precipitated withdrawal

 jumping in morphine-dependent non-diabetic mice. Moreover, thapsigargin also increased

 naloxone-induced enhancement of NA turnover in morphine-dependent non-diabetic mice.

 Thapsigargin selectively inhibits Ca2' uptake into the IP3-sensitive microsomal Ca2' pool by

 inhibiting ATPIMg-dependent ATPase (Bian et al., 1991). The subsequent depletion of this

 pool activates a low-conductance, Ca2'-sensitive, non-voltage activated membrane current

 (Premack et al., 1994; Takemura et al., 1991). Thus, it is possible that thapsigargin increases
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[Ca2']i. It has been reported that cyclopiazonic acid, an inhibitor of endoplasmic reticulum

Ca2'-ATPase inhibitor, enhances the NA overflow in rat vas defences (Bourreau, 1996). Thus,

it is possible that NA release in neurons may modulate the intracellular [Ca2"]i. Therefore,

thapsigargin-induced enhancement of naloxone-precipitated withdrawal jumping and

naloxone-induced increase in NA turnover in morphine-dependent non-diabetic mice may be

due to the increase in [Ca2']i.

       Many investigators have indicated that the blockade of L- and N-type calcium

channels inhibits the expression of naloxone-precipitated withdrawal signs in morphine-

dependent mice and rats (Basilico et al., 1992; Bongianni et al., 1986; Tokuyama et al., 1995).

In contrast to calcium channel blocker, L-type calcium channel opener, Bay K 8644, increases

the severity of naloxone-precipitated withdrawal in acute morphine-dependent rats (Banios

and Baeyens, 1991). Furthermore, it has been reported that naloxone-induced enhancement of

NA metabolism is blocked by L-type calcium channel blockers, nimodipin and verapamil

(Bongianni et al., 1986). Hence, infiux of Ca2' into the cytoplasm through the calcium

channels may be involved in the expression of naloxone-precipitated withdrawal signs and

naloxone-induced activation of NA neurons in morphine-dependent animals. Intracellular

calcium modulators used in this study have the same propenies as calcium channel blocker or

activator, since ryanodine suppresses and thapsigargin increases the naloxone-induced

withdrawal jumping in morphine-dependent non-diabetic mice. However, Fundytus and

Coderre (1994) reported that a single injection of thapsigargin prior to the precipitation of

withdrawal failed to increase the severity of abstinence symptoms in morphine-dependent rats.

This result contradicted our present data. In the study of Fundtus and Coderre (1994),

thapsigargin was injected 10 min prior to naloxone injection, whereas in the present study,

thapsigargin was injected 60 min before injection ofnaloxone. Furthermore, the estimation of

naloxone-precipitated withdrawal in the present study also differed from Fundytus and

Coderre (1994). Thus, differences in the results between our data and the results ofFundytus

and Coderre (1994) may be due to different experimental conditions.

       In Experiment 2-5, I observed that morphine-dependent diabetic mice jump less

within 5 min after naloxone challenge than morphine-dependent non-diabetic mice.

Furthermore, NA turnover in the frontal cortex was not affected by naloxone challenge.

Moreover, the expression of naloxone-precipitated withdrawal jumping in morphine-

dependent diabetic mice was not affected by pretreatment with either thapsigargin or

ryanodine. It has been reported that chronic excessive intracellular calcium overload might
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induce cardiac dysfunction in chronic diabetes (Heyliger et al., '1987; Nishio et al., 1990). In

peripheral nerves of diabetic rats, mitochondrial and axoplasmic calcium levels were found to

be increased by electron-probe X-ray microanalysis (Lowery et al., 1990). Moreover, voltage-

dependent calcium currents through L- and N-channels are enhanced in dorsal root ganglion

neurons ofBBfWor rats and diabetic mice in vivo (Hall et al., 1995; Kostyuk et al., 1995).

These results suggest that the diabetic state may affect calcium homeostasis in neurons and

various tissues. Furthermore, it has been suggested that the ability of caffeine, a ryanodine

receptor agonist, to mobilize Ca2' from intracellular stores is impaired in the diabetic aorta,

since caffeine-induced contraction is significantly reduced in the diabetic aorta compared with

that in the control aorta. Moreover, it has been reported that the activity of Ca2'-ATPase is

impaired in the diabetic rat (Janicki et al., 1994). Therefore, it is possible that diabetes is an

anomalous intracellular calcium homeostasis. In the present study, i.c.v. pretreatment with

thapsigargin and ryanodine did not affect the naloxone-precipitated withdrawal jumping in

morphine-dependent diabetic mice. Thus, it is possible that the attenuation of naloxone-

precipitated withdrawal jumping in morphine-dependent diabetic mice may be due to

anomalous intracellular calcium homeostasis followed by changes in calcium store function.

       In conclusion, the results of Chapter 2 suggested that the attenuation of naloxone-

precipitated withdrawal jumping in morphine-dependent diabetic mice may be due to the

dysfunction ofcentral noradrenergic systems, followed by the activation ofPKC and increase

in [Ca2']i.
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Chapter 3

Modification ofreinforcing effect of several addictive drugs

                by diabetes in mice
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Introduction

       The conditioned place preference paradigm is reliable technique for measuring the

reinforcing propenies ofdrugs, and is particularly usefu1 for evaluating the reinforcing effects

of addictive drugs, such as morphine, methamphetamine and cocaine. The conditioned place

preference paradigm was recently used to demonstrate that morphine has a strong

conditioning effect in mice as well as rats (Suzuki et al., 1993). Moreover, an additional

important feature of the conditioned place preference paradigm is that both agonist and

antagonists can be evaluated without any complicating behavioral motor effects (Hoffman,

1989).

       The reinforcing effects of opioids, such as morphine and heroin, have been

demonstrated using self-administration and conditioned place preference procedure in rodents

and other mammalians. The place conditioning study in rats and mice provided evidence that

motivational effects of pt- and 6-opioid agonists result from the activation of pt- and 6-opioid

receptors in the central neuron systems, respectively (Shippenberg et al., 1987; Suzuki et al.,

1991, 1993, 1994). Such findings suggest that the activation of supraspinal pt- and/or 6-opioid

receptors is required for the expression of the reinforcing effect of opioids. Suzuki et al.

(1993) previously demonstrated that systemic administered morphine produced a place

preference in pi-opioid receptor-deficient CXBK mice. Furthermore, the morphine-induced

place preference in mice was not blocked by pretreatment naloxonazine, a selective pi-opioid

receptor antagonist. Based on these results, Suzuki et al. (1993) suggested that morphine

produces its motivational effects via naloxonazine-•insensitive pt-opioid receptors; namely p2-

opioid receptors. Furthermore, they suggested that 6i- and 6,-opioid receptors may be

involved in the modulation of the reinforcing effect of morphine, since the morphine-induced

place preference is blocked by pretreated with naltrindole, a selective 6-opioid receptor

antagonist, 7-benzylidenenaltrexone, a selective 6i-opioid receptor antagonist, and naltriben, a

selective 6,-opioid receptor antagonist (Suzuki et al., 1994).

       It has been reported that the antinociceptive potency, but not maximal effect, of

morphine was decreased in several rodent models of hyperglycemia, including a

spontaneously diabetic strain mice, streptozotocin-induced diabetes, a model animal oftype I

diabetes (Simon and Dewey, 1981). In Chapter 2, I indicated that the induction of physical

dependence on morphine was also significantly decreased in streptozotocin-induced diabetic

mice. In a clinical study, Morley et al. (1984) showed a significant decreased pain tolerance in
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diabetic patients and in normal fasted subjects and suggested that the painfu1 neuropathy

experienced by some diabetic patients might involve an interaction ofglucose with the action

of endogenous opioid peptides.

       Recently, Kamei et al. (l994a) demonstrated that the potency of naloxonazine-

sensitive pharmacological actions of pt-opioid receptor agonists, i.e. supraspinal

antinociception, Straub tail reaction and locomotor-enhancing effect, in diabetic mice were

markedly reduced as compared with in non-diabetic mice. Furthermore, in Chapter 2, I

indicated that pi-opioid receptor-mediated naloxone-precipitated signs of withdrawal from

physical dependence on morphine in diabetic mice are significantly less than those in non-

diabetic mice. In contrast, there was no significant difference in naloxonazine-insensitive

pharmacological actions of p-opioid receptor agonist, i.e. spinal antinociception and

antitussive effect, between diabetic mice and non-diabetic mice (Kamei et al., 1993a, b,

1994a). Therefore, we proposed that mice with diabetes are selectivelY hyporesponsive to

activation of pi-opioid receptors, but are normally responsive to p,--opioid receptors. On the

other hand, Kamei et al. (1994b) previously reported that the 7-benzylidenenaltrexone-

sensitive antinociceptive effect of [D-Pen2'5]enkephalin (DPDPE) was significantly greater in

diabetic mice than in non-diabetic mice, whereas there was no significant difference in the

naltriben-sensitive antinociceptive effect of [D-Ala2]deltorphinell between diabetic and non-

diabetic mice. These findings suggested that mice with diabetes are selectively

hyperresponsive to activation of6i-opioid receptors, but are normally responsive to 62-opioid

receptors. Therefore, functional abnormalities in pt- and 6-opioid receptor functions of

diabetic animals may alter the reinforcing effect of morphine.

       Thus, in Experiment 3-1, I compared the morphine-induced place preference in

diabetic and non-diabetic mice to clarify the hypothesis that functional abnormalities in p-

and 6-opioid receptor functions of diabetic animals may alter the reinforcing effect of

morphine.

       It has been reported that the psychostimulant-induced place preference is abolished

by pretreatment with dopamine receptor antagonists. Indeed, amphetamine-induced place

preference was antagonized by pretreatment with haloperidol, a dopamine receptor antagonist

(Spyraki et al., 1982), or 7-chloro-8-hydroxy-3-methyl-1--phenyl-2,3,4,5--tetrahydro-IH-3-

benzazepine (SCH23390), a selective dopamine D, receptor antagonist (Leone and Di Chiara,

1987). Furthermore, microinjection of (+)-amphetamine into the nucleus accumbens resulted

in a place preference (Carr and White, 1986). Moreover, amphetamine increases extracellular
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dopamine in various terminal dopamine areas, as estimated by brain microdialysis studies in

free-moving rats (Di Chiara and Imperato, 1988). Based on these results, Di Chiara (1995)

proposed that enhanced dopamine release from the nucleus accumbens may play a critical

role in the acquisition and expression ofpsychic dependence on drugs of abuse.

       Dopamine D3 receptors are part of the dopamine D2-like receptor family (Sokoloff et

al. 1990; Seeman and Van Tol 1994). Dopamine D, receptors are found mainly in limbic

regions ofthe brain, and are involved in cognition, emotion and endocrine functions (Leveque

et al., 1992). The dopamine receptor agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-

OH-DPAT) reportedly has a 50- to 100-hold higher affinity for dopamine D3 receptors than

dopamine D, receptors in genetically transfected cells (Levesque et al. 1992). Thus, 7-OH-

DPAT has been used to investigate possible dopamine D, receptor-mediated functions. Recent

evidence has suggested that dopamine D3 receptors may modulate the reinforcing effects of

cocaine and morphine. Since the self-administration of cocaine in rats was decreased by co-

administration of 7-OH-DPA r, Caine and Koob (1993) suggested that preferential stimulation

of dopamine D3 receptors by a low dose of 7-OH-DPAT may modulate the reinforcing

propenies of cocaine. Furthermore, Suzuki et al. (1995) reported that morphine-induced

hyperlocomotion was attenuated by pretreatment with 7-OH-DPA[r. They also indicated that

the morphine-induced increase in the dopamine metabolites 3,4-dihydroxyphenylacetic acid

(DOPAC) and homovanillic acid (HVA) in the limbic forebrain (nucleus accumbens and

olfactory tubercle) was attenuated by 7-OH-DPAT. These results suggest that the activation of

the presynaptic dopamine D, receptors in the mesolimbic dopamine system may attenuate the

expression of morphine-induced hyperlocomotion. Moreover, it has been reported that the

acquisition and' expression of the morphine-induced place preference are antagonized by

pretreatment with 7-OH-DPAT (Fonseca et al., 1995). These results suggest that the activation

ofdopamine D3 receptors attenuates the rewarding properties ofopioids.

       It is reported that spontaneous locomotor activity in diabetic mice was significantly

greater than that in non-diabetic mice (Kamei et al. 1994d). Furthermo.re, haloperidol and

SCH23390, a selective dopamine Di receptor antagonist, significantly reduced spontaneous

locomotor aetivity in diabetic mice, but not in non-diabetic mice (Kamei et al. 1994d).

Moreover, dopamine turnover (DOPAC+HVAIdopamine) in the limbic forebrain in diabetic

mice was significantly higher than that in non-diabetic mice (Kamei et al. 1994d). These

results led to propose the possibility that neurotransmission in mesolimbic dopamine systems

may be enhanced, rather than reduced, in diabetic mice relative to that in non-diabetic mice
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(Kamei et al., 1994d). Thus, it is possible that methamphetamine-induced place preference

may be greater in diabetic mice than in non-diabetic mice.

       Thus, in Experiment 3-2, I compared methamphetamine-induced place preference in

diabetic and non-diabetic mice to clarify the hypothesis that functional abnormalities in

mesolimbic dopamine systems, especially dopamine D3 receptor function, in diabetic mice

may alter the reinforcing effect ofmethamphetamine.

       Although the reinforcing and stimulant properties of cocaine and related drugs have

been shown to correlate with their binding propenies at the dopamine transporter (Bergman et

al., 1989; Rjtz et al., 1987), it is possible that the cocaine-induced place preference may be

changed in diabetic mice. The aim of Experiment 3-3 was to compared the cocaine-induced

place preference in diabetic and non-diabetic to clarify the hypothesis that functional

abnormalities in mesolimbic dopamine systems in diabetio mice may alter the reinforcing

effect ofcocaine.
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Experiment 3-1: Modification of morphine-induced place preference by diabetes

Materials and Methods

Animals

      Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning of the experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle. Mice serum glucose levels above 400 mg!dl were considered

diabetic.

Place conditioning

      Place conditioning was conducted as previously described using a minor

modification ofbiased procedure (Suzuki et al., 1991) according to the method ofBardo et al.

(1984). The apparatus used was a shuttle box (15 x 30 x 15 cm) which was divided into two

compartments of equal size. One compartment was white with a textured floor and the other

was black with a smooth floor. For conditioning, mice were immediately confined to the

white compartment after drug injections and to the black compartment after saline injections.

Saline conditioning was conducted before confinement to both compartment. In addition,

some group of mice was immediately confined to the black compartment after morphine

injection and to the white compartment after saline injections. Conditioning sessions (3 for

drug: 3 for vehicle) were conducted for a 60-min period once a day. The order of the 6

conditioning sessions was conducted alternating. On day 7, tests of conditioning were

performed as follows: the partition separating the two compartments was raised 7 cm above

the fioor, and a neutral platform was inserted along the seam separating the compartments.

Mice were not given any injections before test session. The time spent in each compartment

during a 900-s session was then measured by a infrared beam sensor (KN-80, Natume, Tokyo,

Japan) in a blinded fashion. The position ofthe rnouse was defined by the position of its body.

All sessions were conducted under conditions ofdim illumination (40 lux) and white masking
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noise. Mice exhibited no preference for either ofthe place states under these conditions.

Drugs

Streptozotocin was purchased from Sigma Chemical Co., St. Louis, MO, USA. Morphine

hydrochloride was purchased from Sankyo, Co., Tokyo, Japan. B-Funaltrexamine,

naloxonazine, 7-benzylidenenaltrexone, naltriben and 2-methyl-4aa-(3-hydroxyphenyl)-

1,2,3,4,4a,5,12,12aa-octahydroquinolino[2,3,3-g]isoquinoline (TAN-67) were synthesized by

Dr. Nagase (Toray Industries, Kamakura, Japan). All drugs were dissolved in O.90/o saline

solution. B-Funaltrexamine (10 and 20 mg/kg, s.c.) and naloxonazine (35 mglkg, s.c.) were

injected 24h before injection of morphine. 7-Benzylidenenaltrexone (O.3 and O.7 mglkg, s.c.)

was injected 30 min before injection of morphine. Naltriben (O.1 and O.5 mglkg, s.c.) was

injected 30 min before injection of morphine. The dose and schedule for each opioid receptor

antagonist in this study were determined as described previously (Suzuki'et al., 1993, 1994).

Each antagonist was injected before each morphine injection. Glucose was injected 30 min

before inj ection of morphine.

Data analysis

       Conditioning scores represent the time spent in the drug-paired place minus the time

spent in the vehicle-paired place and are expressed as mean Å} S.E.. Statistical analysis of

difference between groups was assessed with Wilcoxon rank-sum test (comparison of two

groups) or one-way analysis of variance (ANOVA) followed by Kruskal-Wallis test

(comparison between multiple groups). The potency ratio of the morphine-induced place

preference between non-diabetic mice and diabetic mice was calculated using Prograrn 11 of

the Pharmacological Calculations systems of Tallarida and Murray (1987).
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Results

Effects ofdiabetes on morphine-induced place preference

       As shown in Fig. 3-1, none of the mice receiving saline in conditioning sessions

exhibited a significant preference for either compartment of the test box. Testing of

experimentally saline-treated mice on the test session revealed that neither non-diabetic nor

diabetic mice showed a significant preference for one side of the test box over the other. The

place conditioning produced by morphine is shown in Fig. 3-1. In non-diabetic mice,

morphine, at dose ranges from 3 to 30 mglkg, s.c., caused a dose-related preference for the

drug-associated place, and significant conditioning was observed at doses of 5, 10 and 30

mglkg. In diabetic mice, morphine (1 mglkg) induced a slight place preference, although this

effect was not statistically significant. Significant conditioning was observed at doses of3, 5

and 10 mg/kg in diabetic mice. At these doses, all diabetic mice exhibited preference for the

drug-associated place. On the other hand, when morphine (5 mg/kg, s.c.) was paired with

black compartment, morphine also caused a significant place preference in both diabetic

(mean conditioning score of 178.9 Å} 67.9 s, n==7) and non-diabetic mice (mean conditioning

score of 117.2 Å} 34.6 s, n=8). Pretreatment with glucose (30 mmoVkg, i.p.) increased the

serum glucose levels ofnon-diabetic mice (432.3 Å} 11.3 mgldl, n= 8) to the level ofdiabetic

mice. However, morphine-induced place preference in non-diabetic mice was not affected by

pretreatment with glucose. There was no significant difference. in the morphine-induced place

preference between glucose-treated non-diabetic (139.6 Å} 38.1 s, n==8) and glucose-

untreated non-diabetic mice (i12.9 Å} 36.4 s, n=10).

Influence of p-opioid receptor antagonists pretreatment upon the morphine-induced

place preference

       P-Funaltrexamine (10 and 20 mg!kg, s.c.), a selective p-opioid receptor antagonist,

caused aversion for the drug-associated place, and significant conditioning aversion was

observed at dose of20 mgfkg in non-diabetic mice (Fig. 3-2). However, B-funaltrexamine did

not cause neither a place aversion nor place preference in diabetic mice. Moreover,

naloxonazine (35 mg/kg, s.c.), a selective p,-opioid receptor antagonist, caused a significant

place aversion in non-diabetic mice, but not in diabetic mice.
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       The effects of pretreatment with P-funaltrexamine on the place preference produced

by morphine in both diabetic and non-diabetic mice are shown in Fig. 3-3. After pretreatment

with saline, morphine (5 mglkg) produced a significant preference for drug-paired place in

both non-diabetic mice and diabetic mice. Thus, pretreatment with saline did not alter this

effect of morphine. However, the morphine-induced place preference was significantly

antagonized by pretreatment with B-funaltrexamine in both non-diabetic and diabetic mice.

The mean conditioning score of morphine (5 mg!kg) in both non-diabetic and diabetic mice

pretreated with B-funaltrexamine at doses of 1O mg/kg and 20 mg/kg were significantly lower

than those in saline-pretreated non-diabetic and diabetic mice, respectively. Furthermore,

morphine (3 mg/kg)-induced place preference in diabetic mice was also antagonized by

pretreatment with P-funaltrexamine. On the other hand, as shown in Fig. 3-4, pretreatment

with naloxonazine did not modify the morphine (5 mglkg)-induced place preference in non-

diabetic mice. The mean conditioning score did not significantly differ from that in mice that

had been pretreated with saline. Furthermore, naloxonazine also had no effect on morphine-

induced place preference in diabetic mice. Indeed, there was no significant difference in the

mean conditioning score of morphine (3 and 5 mglkg) between saline-pretreated diabetic mice

and naloxonazine-treated diabetic mice. Thus, pretreatment with naloxonazine did not modify

the appetitive effect of morphine in either diabetic or non-diabetic mice.

Influence of 6i- and 6,-opioid receptor antagonists pretreatment upon morphine-induced

place preference

       7-Benzylidenenaltrexone (O.3 and O.7 mg/kg, s.c.), a selective 6i-opioid receptor

antagonist, alone caused neither place preference nor place aversion in both non-diabetic and

diabetic mice. Furthermore, naltriben (O.1 and O.5 mglkg, s.c.), a selective 6,-opioid receptor

antagonist, alone also did not cause either a place preference or a place preference. The effects

of 7-benzylidenenaltrexone and naltriben on the morphine-induced place preference are

shown in Fig. 3-5 and 3-6. Morphine-induced place preference was antagonized by

pretreatment with naltriben in a dose-related manner in both diabetic and non-diabetic mice.

Indeed, naltriben, at a dose of O.5 mglkg, significantly abolished the morphine (5 mglkg)-

induced place preference. In diabetic mice, naltriben, at a dose of O.5 mglkg significantly

antagonized the morphine (3 mglkg)-induced place preference. Moreover, naltriben, at a dose

of O.5 mglkg, significantly suppressed the morphine (5 mglkg)-induced place preference in
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diabetic mice. On the other hand, 7-benzylidenenaltrexone, at a dose of O.7 mg/kg,

significantly abolished the morphine (5 mglkg)-induced place preference in non-diabetic mice.

Moreover, 7-benzylidenenaltrexone, at a dose of O.7 mglkg, also abolished the morphine (10

mglkg)-induced .place preference in non-diabetic mice. In diabetic mice, although the lower

dose (3 mgfkg) of morphine-induced place preference was significantly suppressed by

pretreatment with 7-benzylidenenaltrexone, at a dose of O.7 mglkg, the higher dose of

morphine (5 mglkg)-induced place preference was not antagonized by pretreatment with 7-

benzylidenenaltrexone.

       As shown in Fig. 3-3 and 3-6, the morphine (5 mgfkg)-induced place preference in

diabetic mice was significantly but not completely suppressed by pretreatment with P-

funaltrexamine, and was not affected by 7-benzylidenenaltrexone. However, when B-

funaltrexamine (10 mglkg) and 7-benzylidenenaltrexone (O.7 mglkg) was co-pretreated with

morphine, the morphine (5 mglkg)-induced place preference in diabetic mice was completely

abolished (morphine alone, 199.4 Å} 42.0 s, n=8; morphine with B-funaltrexamine, 71.2 Å} 44.9

s, n=8; morphine with B-funaltrexamine and 7-benzylidenenaltrexone, 19.1 Å} 52.1 s, n=8).

TAN-67-induced place preference in diabetic mice

       The place conditioning produced by TAN-67, a non-peptidic selective 6-opioid

receptor agonist, is shown in Fig. 3-7. In non-diabetic mice, TAN-67, at doses of 10, 30 and

56 mg/kg, s.c., cause neither a place preference nor a place aversion for the drug-associated

place. However, in diabetic mice, TAN-67 caused a dose-dependent place preference. TAN-67,

at a dose of 10 mglkg, induced a slight place preference, although this effect was not

statistically significant. Significant conditioning was observed at a dose of30 mg/kg.
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Figure 3-1. Place conditioning produced by morphine (circle) in non-diabetic (open
symbol) and diabetic (closed symbol) mice. Ordinate: mean difference (s) between
times spent on drug- and saline-paired sides of test box. Each point represents the mean

Å} S.E. of 10-16 mice. The asterisk denotes significant preference conditioning
(Wilcoxon test: 'PÅqO.05, "'PÅqO.Ol vs. respective saline alone (triangle)).
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Figure 3-2. Place conditioning produced by 6-funaltrexamine (FNA, 10 and 20 mglkg,

s.c.) and naloxonazine (NXZ, 3S mg/kg, s.c.) in non-diabetic and diabetic mice. Each
column represents the mean Å} S.E. of 7-12 mice. The asterisk denotes significant place

aversion conditioning (Wilcoxon test: 'PÅqO.05 vs. saline (SAL) alone).
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Figure 3-3. Effect of 6-funaltrexamine (FNA, 10 and 20 mg/kg, s.c.) on morphine (3 or

5 mglkg, s.c.)-induced conditioned place preference in non-diabetic and diabetic mice.
Each column represents the mean Å} S.E. of 7-13 mice. The asterisk denotes significant
preference conditioning (Wilcoxon test: 'PÅqO.05, ""PÅqO.Ol vs. saline (SAL) alone).
The sharp denotes significant difference from morphine alone (Wilcoxon test: #PÅqO.05).

Significant difference from respective morphine (5 mglkg) alone (Kruskal-Wallis test
followed by Wilcoxon test: $PÅqO.05).
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Figure 3-4. Effect of naloxonazine (NXZ, 35 mglkg, s.c.) on morphine (3 or 5 mglkg,
s.c.)-induced conditioned place preference in non-diabetic and diabetic mice. Each
column represents the mean Å} S.E. of 7-12 mice. The asterisk denotes significant
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Figure 3-5. Effects of naltriben (NTB, O.1 and O.5 mglkg, s.c.) on morphine (3 or 5
mgtkg, s.c.)-jnduced conditioned place preference jn non-diabetjc and djabetic mice.
Each column represents the mean Å} S.E. of 7-14 mice. The asterisk denotes significant
preference conditioning (Wilcoxon test: 'PÅqO.05, "*PÅqO.Ol vs. saline (SAL) alone).
The sharp denotes significant difference from morphine alone (Wilcoxon test: #PÅqO.05).

Significant difference from respective morphine (5 mglkg) alone (Kruskal-Wallis test
followed by VVilcoxon test: $PÅqO.05).
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Figure 3-6. Effect of 7-benzylidenenaltrexone (BNTX, O.3 and O.7 mglkg, s.c.) on
morphine (3 or 5 mglkg, s.c.)-induced conditioned place preference in non-diabetic and
diabetic mice. Each column represents the mean Å} S.E. of 7-13 mice. The asterisk
denotes significant preference conditioning (Wilcoxon test: 'PÅqO.05, "PÅqO.Ol vs.
saline (SAL) alone). The sharp denotes significant difference from morphine alone
(Wilcoxon test: #PÅqO.05). Significant difference from respective morphine (5 mglkg)
alone (Kruskal-Wallis test followed by Wilcoxon test: $PÅqO.05).
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Experiment 3-2: Effects of diabetes on methamphetamine-induced place preference

                               in mice.

Materials and Methods

Animals

      Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning ofthe experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mglkg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

were injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle. Mice with serum glucose levels above 400 mgtdl were considered

diabetic.

Place conditioning

      Place conditioning was conducted as previously described using a minor

modification of an unbiased procedure (Suzuki et al., 1990). The apparatus used was a shuttle

box (15 x 30 x 15 cm: w x 1 x h) which was divided into two compartments of equal size. One

compartment was white with a textured floor and the other was black with a smooth floor. For

conditioning, mice were confined to one compartment after drug injections and to the other

compartment after saline injections. Conditioning session consisted of 6 alternate day

injections of drug or vehicle (saline). Immediately following drug injection, mice were

confined to one compartment. Following vehicle injections they were confined to the other

compartment. Treatment compartment and the presentation order of drug and vehicle were

counterbalanced for each drug dose. Conditioning sessions were 60 min in duration. On day 7,

tests of conditioning were performed as follows: the partition separating the two

compartments was raised to 7 cm above the floor, and a neutral platform was inserted along

the seam separating the compartments. The time spent in each compartment during a 900-sec

session was then measured in a blinded fashion by an infrared beam sensor (KN-80, Natume,

Tokyo, Japan). The position ofthe mouse was defined by the position ofits body. All sessions

were conducted under conditions ofdim illumination and masking white noise.
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Drugs

       Streptozotocin was purchased from Sigma Chemical Co., St. Louis, MO, USA.

Methamphetamine hydrochloride was purchased from Dainippon Seiyaku, Co., Tokyo, Japan.

7-OH-DPAT {(Å})-7-hydroxy-N,N-di-n-propyl-2-aminotetralin} and quinpirole (trans-(-)-4aR-

4a,5,6,7,8,8q9-octahydro-5-propyl-IH-pyrazolo[3,4-g]quinoline) were purchased from

Research Biochemicals, Inc., Natick, MA, USA). Streptozotocin was dissolved in O.1 N

citrate buffer. Other drugs were dissolved in sterile O.9 O/o NaCl solution. 7-OH-DPA[[' was

injected s.c. at 10 min before methamphetamine injection. Quinpirole was injected i.c.v. 10

min before methamphetamine administration. Intracerebroventricular (i.c.v.) administration (5

pVmouse) was performed according to the method described in Experiment 1-2 using a 50 pl

Hamilton syringe. Each antagonist was injected before each conditioning session for

methamphetamine. The dose, route and schedule for quinpirole and 7-OH-DPAT in this study

were determined as described previously (Kamei et al. 1996a; Funada et al, 1995).

Data analysis

       Conditioning scores represent the time spent in the drug-paired place minus the time

spent in the vehicle-paired place and are expressed as mean Å} S.E. Dose-response curves were

analyzed using a one-way random factorial analysis ofvariance and linear regression analysis.

The Wilcoxon test was used to determine whether individual doses produced a significant

conditioning (*PÅqO.05).
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Results

Effects of diabetes on methamphetamine-induced place preference

       As shown in Fig. 3-8, none ofthe mice that received saline in conditioning sessions

exhibited a significant preference for either compartment of the test box. The mean

conditioning scores were -2.0 Å} 33.8 s (n=8) for non-diabetic mice and -1.3 Å} 47.5 s (n=8) for

diabetic mice. The place conditioning produced by methamphetamine is also shown in Fig. 3-

8. In non-diabetic mice, methamphetamine, at dose ranges from O.3 to 3 mglkg, s.c., caused a

dose-related preference for the drug-associated place, and significant conditioning was

observed at doses of 1 and 3 mglkg. In diabetic mice, methamphetamine (O.1 mglkg)

produced a slight place preference, but this effect was not statistically significant. Significant

conditioning was observed at doses ofO.3 mglkg and 1 mglkg in diabetic mice. At these doses,

all ofthe diabetic mice exhibited preference for the drug-associated place.

Effect of quinpirole on methamphetamine-induced place preference

       The effect ofpretreatment with quinpirole, a dopamine D2D3 receptor agonist, on the

place preference produced by methamphetamine is shown in Fig. 3-9. Methamphetamine (3

mglkg for non-diabetic mice and O.3 mglkg for diabetic mice) following i.c.v. pretreatment

with saline produced a significant preference for the drug-paired place in both non-diabetic

mice (163.6 Å} 51.6 s, n=8) and diabetic mice (166.1 Å} 53.5 s, n==8). However,

methamphetamine-induced place preference was significantly antagonized by i.c.v.

pretreatment with quinpirole (5 nmol) in both non-diabetic and diabetic mice. The mean

conditioning score for methamphetamine following pretreatment with quinpirole in non-

diabetic and diabetic mice was -12.9 Å} 31.6 s (n=8) and l7.8 Å} 48.0 s (n=12), respectively.

Effect of 7-OH-DPAT on methamphetamine-induced place preference

       The effect of 7-OH-DPAT, a selective dopamine D, receptor agonist, on

methamphetamine-induced place preference is shown in Fig. 3-10. Methamphetamine (3

mglkg for non-diabetic mice and O.3 mglkg for diabetic mice) following s.c. pretreatment

with saline produced a significant preference for the drug-paired place in both non-diabetic

mice (176.5 Å} 45.0 s, n=8) and diabetic mice (163.6 Å} 37.5 s, n=8). This methamphetamine-

induced place preference was significantly antagonized by pretreatment with 7-OH-DPAT

(O.1 mgfkg) in non-diabetic mice. The mean conditioning score for methamphetamine
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following pretreatment with 7-OH-DPA[r (-31.1 Å} 40.0 s, n=8) was significantly (PÅqO.05)

lower than that in saline-pretreated non-diabetic mice. On the other hand, a significant

methamphetamine-induced place preference was not observed in 7-OH-DPA[r (O.1 mglkg)-

pretreated diabetic mice. However, a statistically significant difference in methamphetamine-

induced place preference was not observed between saline-pretreated diabetic mice and 7-

OH-DPA[T-pretreated diabetic mice.

7-OH-DPAT-induced place conditioning in diabetic mice

       The place conditioning produced by 7-OH-DPAT, a dopamine D3 receptor agonist, is

shown in Fig. 3-11. In non-diabetic mice, 7-OH-DPAT produced a significant aversion for the

drug-associated place. 7-OH-DPAr, at doses of I and 3 mglkg, induced a significant place

aversion (mean conditioning scores of-101.4 Å} 58.9 s, n=8 for 1.0 mglkg, s.c. and -188.3 Å}

64.7 s, n=8 for 3.0 mglkg, s.c.). However, in diabetic mice, 7-OH-DPAT produced neither a

preference nor aversion for the drug-associated place (mean conditioning scores of-5.0 Å} 58.2

s, n=8 for 1.0 mglkg, s.c. and -59.8Å}33.0 s, n=8 for3.0 mg/kg, s.c.).
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Figure 3-8. Place conditioning produced by methamphetamine in diabetic (closed
symbol) and non-diabetic (open symbol) mice. Each point represents the mean
conditioning score Å} S.E. of 8-12 mice. The asterisks denote significant preference
conditioning (Wilcoxon test: 'PÅqO.05 vs. respective saline alone (triangle)).
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Figure 3-10. Effect of 7-OH-DPAT (DPAT; O.1 mglkg, s.c.) on methamphetamine
(MAP)-induced place preference in diabetic and non-diabetic mice. Each column
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The sharp denotes a significant difference from methamphetamine alone (Wilcoxon test:
#PÅqO.05).
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Experiment 3-3: Effects of streptozotocin-induced diabetes on

place conditioning action of cocaine in mice

Materials and Methods

Animals

       Male ICR mice (Tokyo Laboratory Animals Science Co., Tokyo), weighing about 20

g at the beginning ofthe experiments, were used. The mice were housed under the condition

as described in Chapter 1-1. Animals were rendered diabetic by an injection of streptozotocin

(200 mg/kg, i.v.) prepared in O.1 N citrate buffer at pH 4.5. Age-matched non-diabetic mice

vvere injected with vehicle alone. The experiments were conducted 2 weeks after injection of

streptozotocin or vehicle, Mice with serum glucose levels above 400 mgldl were considered

diabetic.

Place conditioning

      Place conditioning was conducted as previously described using a minor

modification of an unbiased procedure as described in Experiment 3-2. The apparatus used

was a shuttle box (15 x 30 x 15 cm: w x 1 x h) which was divided into two compartments of

equal size. One compartment was white with a textured floor and the other was black with a

smooth floor. For conditioning, mice were confined to one compartment after drug injections

and to the other compartment afier saline injections. Conditioning session consisted of 6

alternate day injection of drug or vehicle (saline). Immediately, following drug injection, mice

were confined to one compartment. Following vehicle injection they were confined to the

other compartment. Treatment compartment and the presentation order ofdrugs vehicle were

counterbalanced for each drug dose. Conditioning sessions were 60 min in duration. On day 7,

tests of conditioning were performed as follows: the partition separating the two

compartments was raised to 7 cm above the floor, and a neutral platform was inserted along

the seam separating the compartments. The time spent in each compartment during a 900-s

session was then measured in a blinded fashion by an infrared beam sensor (KN-80, Natume,

Tokyo, Japan). The position of the mouse was defined by the position of its body. All sessions

were conducted under conditions oflim illumination and masking white noise.
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Drugs

       Streptozotocin was pufchased from Sigma (St. Louis, MO, USA.). Cocaine

hydrochloride was purchased from Takeda Pharmaceutical Industries, Inc. (Ohsaka, Japan).

Streptozotocin was dissolved in O.1 N citrate buffer Cocaine hydrochloride was dissolved in

sterile O.9 O/o NaCl solution.

Data analysis

       Conditioning scores represent the time spent in the drug-paired place minus the time

spent in the saline-paired place and are expressed as mean Å} S.E. Dose-response curve was

analyzed using a one-way random factorial analysis ofvariance and liner regression analysis.

The Wilcoxon test was used to determine whether individual doses produced a significant

conditioning (*ÅqO.05).
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Results

       As shown in Fig. 3-12, none of the mice receiving that received saline in

conditioning sessions exhibited a significant preference for either compartment ofthe test box.

The mean conditioning scores were -2.0 Å} 33.8 s (n=8) for non-diabetic mice and -1,3 Å} 47.5

s (n=8) for diabetic mice. The place conditioning produced by cocaine is shown in Fig. 3-12.

In non-diabetic mice, cocaine, at dose ranges from 1 to 30 mglkg, s.c., caused a dose-related

preference for the drug-associated place, and significant conditioning was observed at doses

of 10 and 30 mglkg. In diabetic mice, cocaine (10 mg/kg) caused a slight place preference,

but this effect was not statistically significant. Significant conditioning was observed at doses

of30 mglkg in diabetic mice. At this dose, all diabetic mice exhibited preference for the drug-

associated place. However, there was no significant difference in the cocaine-induced place

preference between diabetic and non-diabetic mice.
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Discussion

       The results of Experiment 3-1 demonstrated that morphine produced dose-related

conditioned place preference in both diabetic and non-diabetic mice. Furthermore, the

morphine-induced place preference was significantly antagonized by pretreatment with the B-

funaltrexamine, a selective p-opioid receptor antagonist, but not naloxonazine, a selective pti-

opioid receptor antagonist in both diabetic and non-diabetic mice. Similarly, Suzuki et al.

(1993) demonstrated that the morphine-induced place preference was not suppressed by

pretreatment with naloxonazine, whereas B-funaltrexamine completely suppressed morphine-

induced place preference. Furthermore, they reported that morphine produced a B-

funaltrexamine-sensitive place preference in p,-opioid receptor deficient CXBK mice.

Therefore, the present results along with the findings of Suzuki et al. (1993) strongly support

the hypothesis that the morphine-induced place preference may be mediated by naloxonazine-

insensitive p-opioid receptors (namely, pt2-opioid receptors).

       In the present study, place aversion was observed following s.c. administration of

naloxonazine and B-funaltrexamine in non-diabetic mice, but not in diabetic mice. It has been

shown that opioid receptor antagonists, such as naloxone and naltrexone, produce a

conditioned place aversion in rats (Bechara and van der Kooy, 1985; Mucha and Herz, 1984)

and mice (Mucha and Walker, 1987). Recent evidence suggests that the aversive properties of

naloxone primarily refiect an antagonism of the activity of central P-endorphin-containing

neurons in mediobasal arcute hypothalamus (Mucha et al., 1984). In receptor binding studies,

it has been reported that naloxonazine inhibits [3H]B-endorphin binding, suggesting that

[3H]P-endorphin might label p, sites (Houghten et al., 1984). Furthermore, it should be noted

that a reasonable naloxonazine dose to obtain a p, selectivity in mice would be 35 mglkg, s.c.

(Ling et al., 1986). In the present study, naloxonazine (35 mglkg, s.c.) produced a conditioned

place aversion, suggesting that selective blockade of p,-opioid receptors results in aversive

motivational states. Possibly, P-endorphinergic pathway would be involved in the aversive

properties of naloxonazine. Nevertheless, the morphine-induced place preference was not

blocked by pretreatment with naloxonazine in both non-diabetic and diabetic mice. These

findings also strongly support the possibility that the motivational effect of morphine may be

mediated by p2-opioid receptors. Recently, Kamei et al. (1994a) proposed that mice with

diabetes are selectively hyporesponsive to activation ofp,-opioid receptors, but are normally

responsive to p2-opioid receptors, since naloxonazine-sensitive, but not naloxonazine-
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insensitive pharmacological actions of p-opioid receptor agonists in diabetic mice were

markedly reduced as compared with in non-diabetic mice. This possibility might be supported

by the present findings that naloxonazine and P-funaltrexamine did not produce place

aversion in diabetic mice.

       The morphine (5 mglkg)-induced place preference in non-diabetic mice was

antagonized by pretreatment with either 7-benzylidenenaltrexone, a selective 6i-opioid

receptor or naltriben, a selective 62-opioid receptor antagonist. These results are also

consistent with previous findings that 6i- and 62-opioid receptors may be involved in the

modulation ofthe reinforcing effect of morphine (Suzuki et al., 1994). The morphine-induced

place preference in diabetic mice was suppressed by pretreatment with naltriben. Furthermore,

the lower dose (3 mglkg) of morphine-induced place preference in diabetic mice was

significantly antagonized by pretreatment with 7-benzylidenenaltrexone. These results

indicate that the motivational effect ofmorphine in diabetic mice is also niodulated by the 6i•-

and 62-opioid receptor. In the present study, the morphine (5 mg/kg)-induced place preference

in diabetic mice was significantly but not completely antagonized by pretreatment with B-

funaltrexamine and was not affected by 7-benzylidenenaltrexone. However, when mice were

pretreated with both P-funaltrexamine and 7-benzylidenenaltrexone, the morphine (5 mglkg)-

induced place preference in diabetic mice was completely abolished. It is not clear whether

the lack of the effect of 7-benzylidenenaltrexone on morphine-induced place preference in

diabetic mice may be caused by the increasing the dose of morphine overcoming the 7-

benzylidenenaltrexone antagonism or the up-regulation of 6i-opioid receptor-mediated

functions. In this regard, Kamei et al. (1994b) previously demonstrated that the

antinociceptive effect of DPDPE was significantly greater in diabetic mice than in non-

diabetic mice, whereas there was no significant difference in the antinociceptive effect of [D-

Ala2]deltorphin II between diabetic and non-diabetic mice. Furthermore, pretreatment with 7-

benzylidenenaltrexone, but not naltriben, significantly antagonized the antinociceptive effect

ofDPDPE. In contrast, the antinociceptive effect of [D-Aja2]deltorphin II was antagonized by

naltriben, but not by 7-benzylidenenaltrexone (Kamei et al., 1994b).

       Recently, Kamei et al. (1995) demonstrated TAN-67, a novel non-peptidic 6-opioid

receptor agonist, produced a marked and dose-dependent 7-benzylidenenaltrexone--sensitive,

but not naltriben-sensitive, antinociceptive effect in both non-diabetic and diabetic mice.

Furthermore, the antinociceptive effect of TAN-67 is significantly greater in diabetic mice

than that in non-diabetic mice (Kamei et al., 1995a). Based on these results, it is suggested
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that mice with diabetes are selectively hyperresponsive to 6,-opioid receptor-mediated

antinociception, but are normally responsive to activation of 6,-opioid receptors. In the

present study, I demonstrated that TAN-67 produced significant place preference in diabetic

mice, but not in non-diabetic mice. This result suggests that the motivational effect mediated

by 6,-opioid receptors, which is silent in non-diabetic mice, fu1fi11 its function in diabetic mice.

On the other hand, higher dose of morphine (10 mg/kg)-induced place preference in non-

diabetic mice was significantly antagonized by 7-benzylidenenaltrexone. Thus, it seems likely

that the lack of the effect of 7-benzylidenenaltrexone on high dose of morphine (5 mglkg)-

induced place preference in diabetic mice might be due to the up-regulation of 6-opioid

receptor-mediated functions.

       In the present study, I also demonstrated that the maximal conditioning of morphine

in diabetic mice was relatively higher than that in non-diabetic mice. Furthermore, the mean

conditioning score of morphine, at a dose of 3 mglkg, was significantly greater in diabetic

mice than that in non-diabetic mice. However, when glucose was administered to non-diabetic

mice to raise their serum glucose levels, morphine-induced place preference in non-diabetic

mice was not changed. This result suggests that the enhancement of morphined•induced place

preference in diabetic mice was not due to their higher serum glucose levels. In this regard, a

conditioned reinforcing effect of morphine has been observed following its injection into

nucleus accumbens (Koob and Goeders, 1989; Olds, 1982). Furthermore, it is reported that

morphine binds with relatively high affmity to 6-opioid receptors (Magnan et al., 1982), and

6- rather than pt-opioid receptors are predominate in this region (Mansour et al., 1988).

Therefore, the reinforcing effects of intra-nucleus accumbens morphine may reflect an

interaction with 6- rather than p-opioid receptors. Thus, it is possible that the enhancement of

morphine-induced place preference in diabetic mice as compared to non-diabetic mjce may be

due to the up-regulation of6i••opioid receptor-mediated.

       Many studies have indicated that morphine increases the activity of mesolimbic and

nigrostriatal dopamine-containing neurons (Gysling et al., 1983; Matthews et al., 1984).

Furthermore, it has been reported that acute morphine treatment increases dopamine release

and metabolism in the caudate putamen and the nucleus accumbens (Di Chiara and Imperato,

1988; Wood et al., 1982). There is evidence that the motivational effect of morphine is

mediated by dopamine neurons in these regions (Botarth and Wise, 1981; Phillips and

LePiane, 1980; Spyraki et al., 1983; Van der Kooy et al., 1982). Locomotor activity in the

experimental animals has been shown to be closely related to the activity ofthe mesolimbic

-  137 -



dopaminergic system. Kamei et al. (1995b) recently demonstrated that spontaneous locomotor

activity in diabetic mice was significantly greater than that in non-diabetic mice. This

enhanced spontaneous locomotor activity in diabetic mice was reduced by pretreatment with

either SCH23390, a selective dopamine Dl receptor antagonist, 7-benzylidenenaltrexone or

naltrindole (Kamei et al., 1994d). Furthermore, Kamei et al. (1994d) also demonstrated that

the dopamine turnover in limbic forebrain (including nucleus accumbens and olfactory

tubercle) is increased in diabetic mice as compared to non-diabetic mice. On the other hand,

morphine-induced increase in dopamine turnover in the mouse limbic forebrain was

significantly suppressed by naltrindole (Naritra et al., 1993). Based on these results, Kamei et

al. (1994d) previously suggested that the enhanced spontaneous locomotor activity in diabetic

mice may be result from increased dopamine release in mesolimbic dopamine systems, which

might be due to the up-regulation of 6-opioid receptor-mediated functions. Therefore, the

increased dopamine neurotransmission which related to the up-reguiation of 6-opioid

receptor-mediated functions may account for the enhancement of morphine-induced

appetitive effect in diabetic mice.

       In conclusion, the results from Experiment 3-1 support the hypothesis that the

morphine-induced place preference may be mainly mediated through the activation ofthe p2-

opioid receptor, and suggest that the enhancement ofthe morphine-induced place preference

in diabetic may be due to the up-regulation of6,-opioid receptor-mediated functions.

       In Experiment 3-2, methamphetamine produced a dose-dependent and significant

place preference in both diabetic and non-diabetic mice. This methamphetamine-induced

place preference was attenuated by pretreatment with quinpirole in both diabetic and non-

diabetic mice. White and Wang (1984) reported that somatodendric dopamine-autoreceptors,

which regulate the impulse flow of most mesolimbic dopamine neurons in the ventral

tegmental area, exhibit the pharmacological characteristics ofdopamine D2 receptors. On !he

other hand, quinpirole possesses a high affmity for the recently described dopamine D3

receptors. Sokoloffet al. (1990) reported that quinpirole has an approximately 100-fold higher

affinity for the dopamine D3 receptor than for the dopamine D2 receptor. Tang et al. (1994)

reported that quinpirole inhibits dopamine release through the activation of dopamine D2 and

dopamine D3 receptors. Therefore, the present results suggest that the attenuation of

methamphetamine-induced place preference by quinpirole may be mediated by a reduction in

dopamine transmission through the activation of dopamine autoreceptors. In this regard, we

also demonstrated that methamphetamine-induced place preference was attenuated by
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pretreatment with 7-OH-DPAT in both diabetic and non-diabetic mice. Levesque et al. (1992)

reported that the selectivity of 7-OH-DPAT for dopamine D3 receptors is År100-, År1000- and

År10000-fold greater than that for dopamine D2, D4 and Di receptors, respectively, suggesting

that 7-OH-DPAT is a highly selective agonist for dopamine D, receptors. Furthermore, several

microdialysis and brain-slice studies have indicated that 7-OH-DPAT reduces dopamine

release in the nucleus accumbens and striatum (Damsma et al., 1993; Timmerman et al., 1991;

Yamada et al., 1994) Therefore, dopamine D3 receptors may play a role in controlling

dopamine release or synthesis as an autoreceptor in dopamine neuronal terminals in the limbic

area (Gobert et al. 1995). Thus, present data strongly suggest that the reduction of the

mesolimbic dopamine system activity can reduce the rewarding effect ofmethamphetamine.

       The nucleus accumbens is an important site for the mediation of the reinforcing

properties of drug of abuse. Furthermore, it has been reported that the dopamine-containing

neurons ofthe ventral tegmentum and their tracts that innervate the limbic and frontal cortex

are required for the acute reinforcing actions of cocaine and D-amphetamine (Roberts and

Koob, 1982; Yokel and Wise, 1975; 1976). Although Spyraki et al. (1982) failed to observe an

overall signifioant attenuation of amphetamine-induced place preference in rats with 6-

hydroxydopamine lesions of the nucleus accumbens, there was a significant correlation

between dopamine levels in the nucleus accumbens and the magnitude ofthe place preference.

Furthermore, dopamine depletion in the nucleus accumbens varied between 60 and 900/e of

that in the controls, and the importance of a severe depletion of dopamine in attenuating a

place-preference effect has been demonstrated. Moreover, it has been reported that the

microinjection of (+)-amphetamine into the nucleus accumbens resulted in a place preference

(Carr and White, 1986). These reports suggest that the nucleus accumbens is an important

substrate in the psychostimulant-induced place preference. Locomotor activity in the

experimental animals has been shown to be closely related to the activity of the mesolimbic

dopaminergic system. It is recently demonstrated that spontaneous locomotor activity in

diabetic mice was significantly greater than that in non-diabetic mice. Furthermore, Kamei et

al. (1994d) also demonstrated that dopamine turnover (DOPAC+HVAIdopamine) in the

limbic forebrain is significantly greater in diabetic mice than that in non-diabetic mice.

Moreover, it is reported that increased spontaneous locomotor activity in diabetic mice was

attenuated by pretreatment with 7-OH-DPAr (Kamei and Saitoh, 1996a). Based on these

results, we suggested that the enhanced spontaneous locomotor activity in diabetic mice may

result from increased dopamine release in mesolimbic dopamine systems, which might be due
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to the down-regulation ofpresynaptic dopamine D3 receptor-mediated functions (Kamei and

Saitoh, 1996a). In the present study, we also demonstrated that 7-OH-DPA r, at doses of 1 and

3 mg!kg, produced dose-dependent place aversion in non-diabetic mice. However, 7-OH-

DPAf produced neither place preference or place aversion in diabetic mice. It has been

reported that CGSI0746B (5-(4-methyl-1-piperazinyl)imidazo[2,1-b][1,3,5]-

benzothiadiazepine), an inhibitor of dopamine release, produced a place aversion (Schechter

and Meehan 1994). Furthermore, as mentioned above, 7-OH-DPAT inhibits dopamine release

from the nucleus accumbens, a major terminal area of the mesolimbic dopaminergic system,

through the activation of dopamine D3 receptors (Damsma et al. 1993; Timmerman et al.

1991; Yamada et al. 1994; Gobert et al. 1995). These results suggest that the activation of

dopamine D3 receptors in the mesolimbic dopamine system may produce place aversion. Thus,

it is possible that the reduction in place aversion caused by 7-OH-DPA[r in diabetic mice may

be related to the dysfunction ofdopamine D3 receptors. Furthermore, the Present findings also

support the previous hypothesis (Kamei and Saitoh, 1996a) that diabetic mice are

hyporesponsive to dopamine D3 receptor-mediated modulation of dopamine release in the

limbic area. Therefore, the increased dopamine neurotransmission which is associated with

the down-regulation ofpresynaptic dopamine D3 receptor-mediated functions may be account

for the enhancement of methamphetamine's reinforcing effect in diabetic mice. The

mechanisms which lead to this dysfunction of dopamine D3 receptors in diabetic mice are

unclear. It was previously suggested that some factor(s) derived from spleen cells may play an

important direct or indirect role in the alternation ofdopamine receptor functions (Kamei and

Saitoh, 1996b). It is possible that these factor(s) in diabetic mice and the dysfunction of

dopamine D3 receptors may somehow be related.

       In Experiment 3-3, I demonstrated that although statistically significant difference in

cocaine-induced place preference between diabetic and non-diabetic mice was not observed,

cocaine preferentially produced place preference in non-diabetic mice as compared to those in

diabetic mice. In Experiment 3-2, I demonstrated that methamphetamine, an enhancer of

dopamine release, preferentially produced place preference in diabetic mice as compared to

those in non-diabetic mice. Furthermore, it has been shown that cocaine had no significant

effect on locomotor activity in diabetic mice, whereas methamphetamine produced a

significant locomotor-enhancing effect in diabetic mice (Saitoh et al., 1995). Based on the

results of this study and reports from Saitoh et al. (1995), it is possible that the

pharmacological actions of cocaine in diabetic mice were less than those in non-diabetic mice.
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       In Experiment 3-2, the methamphetamine-induced place preference in both diabetic

and non-diabetic mice was significantly antagonized by pretreatment with not only quinpirole,

a dopamine D21D3 receptor agonist, but also 7-OH-DPAT, a selective dopamine D3 receptor

    .agonist. Moreover, 7-OH-DPA[r produced significant place aversion in non-diabetic mice, but

not in diabetic mice. Based on these results, I suggested that the increased dopamine

neurotransmission which associated with the down-regulation of presynaptic dopamine D3

receptor-mediated function may account for the enhancement of methamphetamin's

reinforcing effect in diabetic mice. In contrast with the reinforcing effects of

methamphetamine, it has been reported that the reinforcing and stimulant properties of

cocaine was shown to correlate with their binding properties at the dopamine transporter

(Bergman et al., 1989; Ritz et al., 1987). Furthermore, mice lacking the dopamine transporter

are indifferent to the stimulant effects of cocaine (Giros et al., 1996). Figlewicz et al. (1994)

demonstrated that direct administration of insulin into the CNS resulted in significantly

increased the dopamine transporter mRNA levels relative to vehicle-treated controls. In

addition reports indicated that the dopamine transporter mRNA expression in ventral

tegmental arealsubstantia nigra compacta and ventral medial bundle decreased in

experimentally-induced diabetic rats (Figlewicz et al., 1996; Petrisic et al., 1997). Thus, these

results and the present data suggest that changes in the doparnine transporter regulation in the

dopamine neurons of the mesolimbiclnigrostriatal pathway and the reduction of cocaine's

reinforcing effect in diabetic mice may some how be related. However, further studies are

necessary before this issue can be resolved with greater certainty. In conclusion, cocaine-

induced place preference was attenuated in diabetic mice as compared to those in non-diabetic

mice. This might be due to in part by the alteration in the dopamine transporter function.
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Conclusions

       The above findings lead to the following conclusions:

(1) Activation of protein kinase C (PKC) plays the critical role in the attenuation of pt-opioid

receptor agonist-induced pharmacological action in diabetic mice. Furthermore, intracellular

Ca2' differentially modulates the pt- and 6-opioid receptor•bmediated antinociception. Finally,

changes in p- and 6-opioid receptor agonist-induced antinociception in diabetic mice may be

due to intracellular calcium overload caused by the dysfunction of the calcium storage

function (Fig. A).

(2) The findings of this study demonstrated that pretreatment with PKC and PKA inhibitors

suppress naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice,

and inhibit the naloxone-precipitated increase in cortical NA turnover. Moreover, increased

intracellular calcium augmented naloxone-precipitated withdrawal jumping and the turnover

rate of NA in the frontal cortex in morphine-dependent non-diabetic mice. Naloxone-

precipitated withdrawal jumping was significantly less in morphine-dependent diabetic mice

than in morphine-dependent non-diabetic mice. The reduction of naloxone-precipitated

withdrawal jumping in morphine-dependent diabetic mice may be due to the dysfunction of

central noradrenergic neurons andlor central noradrenergic receptor function. Furthermore,

the mechanisms underling the reduction of naloxone-precipitated withdrawal jumping in

morphine-dependent diabetic mice may be due to the activation of PKC activity and the

dysfunction ofintracellular calcium storage (Fig. B).

(3) The reinforcing effect of morphine and methamphetamine in diabetic mice is greater than

that in non-diabetic mice. The enhancement of the reinforcing effect of morphine in diabetic

mice may be due to the up-regulation of pt,-opioid receptor-mediated functions. Furthermore,

the enhancement of methamphetamine-induced place preference in diabetic mice may be due

to dysfunction ofthe presynaptic dopamine D, receptors. On the other hand, the reinforcing

property of cocaine in diabetic mice was less than that in non-diabetic mice. The reduction of

the reinforcing property of cocaine in diabetic mice might be caused by the dysfunction ofthe

dopamine-transporter, which may be the cause for the enhancement of dopaminergic

transmission in the nucleus accumbens. I have hypothesized that the differential sensitivity
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needed to produce the reinforcing effect of morphine, methamphetamine and

diabetic mice may result from the dysfunction ofcentral dopaminergic systems.

cocame m

From the above findings, I conclude that the etiology of several central diabetic neuropathies

may be due to the abnormality of the intracellular events, especially activation of PKC and

dysfunction of intracellular calcium storage. The reductions of p-opioid receptor-mediated

pharmacological action and naloxone-precipitated withdrawal jumping in diabetic mice may

be caused by both the activation of PKC and the increase in the [Ca2']i. Furthermore, the

differential sensitivity of p-and 6-opioid receptor agonist-induced antinociception in

diabetic mice may be due to the increase in the [Ca2']i.
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Fig. A. Activation ofPKC may desensitize the p-opioid receptor function. The activation of

PKC in diabetic mice may desensitize the p-opioid receptor function. Furthermore, pt-opioid

receptor mediated antinociception may antagonize by the increase in [Ca2']i, whereas 6-opioid

receptor-mediated antinociception may enhance.
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Fig. B. Schematic illustration of diagram of the hypothesized response of identified neuronal

element during normal physiological activity, morphine tolerance and dependence in non-

diabetic and diabetic mice. Note that the magnitudes ofthe responses depicted are illustrative

only. PLC= phospholipase C, AC= adenylate cyclase, G= G-protein, PKC= protein kinase C,

PKA= protein kinase A, e = inhibition, [ lÅr == activation, a = increase, s = decrease. In

non-diabetic mice, chronic treatment with morphine increases the level of G-protein,

adenylate cyclase and phospholipase C (tolerantldependent sate). These changes mediated via

persistent activation of opioid receptors. In opiate dependent-state, the combined presence of

the morphine and up-regulated intracellular pathways would return excitability ofthe neuron

to normal state. Removal ofthe morphine would leave the up-regulated intracellular pathways

unopposed, leading to withdrawal activation of the neurons (withdrawal state). In diabetic

mice, p-opioid receptor-mediated function may be desensitized by the phosphorylation via

activated PKC. It is possible that p-opioid receptor-mediated inhibition of intracellular

pathways in diabetic mice may be weaker than that in non-diabetic mice. Consequently,

increase of the level of intracellular substrates in diabetic mice by chronic treatment with

morphine may be less than that in non-diabetic mice. Furthermore, the increase of [Ca2'], in

diabetic mice reduce the adaptive change induced by naloxone. Therefore, activation of the

neurons induced by withdrawal in diabetic mice may be less than those in non-diabetic mice.
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